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基于自适应性图卷积神经网络的暴力用户检测 

白行健 

北京师范大学附属实验中学 

摘要 

近年年来，互联⽹网和在线社交⽹网络已经成为每个⼈人⽣生活中⾄至关重要的⼀一部分。然⽽而，随着社交⽹网

络的发展和扩⼤大，我们⾯面临⼀一个严重的问题：⽹网络暴暴⼒力力⽤用户。这些⽹网络暴暴⼒力力⽤用户在互联⽹网上传播负

⾯面⾔言论，宣扬暴暴⼒力力，攻击或威胁他⼈人。由于他们对其它⽤用户带来的严重危害，我们有必要寻找⼀一种有
效的⽅方法来检测暴暴⼒力力⽤用户。 

考虑到检测⽹网络暴暴⼒力力⽤用户的任务对⽅方法的可扩展性和准确性的要求较⾼高，我们将机器器学习作为该任
务的解决⽅方案。在机器器学习的框架中，暴暴⼒力力⽤用户检测属于⼆二元分类问题，且每个⽤用户的类别（即是否属
于暴暴⼒力力⽤用户）依赖于两个重要的因素：⽤用户的个⼈人特征（包括其⼈人⼝口统计学特征及其以前发帖的内容）
和该⽤用户周围的局部社交⽹网络结构（即该⽤用户的邻居）。

最近，图卷积神经⽹网络（Graph Convolutional Neural Network，简称GCN）引起了了研究⼈人员的
关注。GCN是⼀一种神经⽹网络模型，可以解决图中半监督式的节点分类问题。由于GCN在模型中同时
考虑了了节点的属性和图的结构信息作为输⼊入，GCN可以⾃自然地适⽤用于社交⽹网络中的暴暴⼒力力⽤用户检测问
题。但是，传统的GCN未能考虑社交⽹网络中的⼀一个重要因素：边的权重（edge weights）。具体来
说，在社交⽹网络中，⼀一个⽤用户更更有可能被其熟悉的⽤用户或与其相似的⽤用户的影响，因此他们之间的

关系应该在社交⽹网络中具有更更⼤大的权重。传统的GCN没有考虑这⼀一点，因此⽆无法准确地刻画社交⽹网
络的结构信息，从⽽而影响了了预测结果的准确性。

本⽂文提出了了⼀一种新的⾃自适应图卷积神经⽹网络模型（Adaptive Graph Convolutional Neural 
Networks，简称AdaGCN），在传统的GCN模型的基础上进⾏行行了了改进和创新。在新模型中，边权被
设置为可训练的变量量，这允许模型⾃自适应性地学习⽤用户之间关系的权重。⼀一个值得关注的问题是虽

然可训练的边权提升了了模型的能⼒力力，但是参数的增加会导致模型更更难训练并可能发⽣生过拟合。为了了

解决这个问题，本⽂文引⼊入标签平滑假设（Label Smoothness Assumption），即在社交⽹网络上相邻的
两个⽤用户更更有可能会有相同的标签（即他们更更有可能同时为暴暴⼒力力⽤用户或同时为正常⽤用户）。本⽂文使

⽤用标签平滑假设对边权的训练施加了了额外的监督。具体来说，本⽂文引⼊入标签传播算法（Label 
Propagation Algorithm ，简称LPA），并设计了了丢⼀一损失（the leave-one-out loss）作为标签平滑假
设的具体实现，从⽽而实现了了和GCN模型的⾃自然结合。

本⽂文在Manoel Horta Ribeiro等⼈人收集的数据集上应⽤用了了AdaGCN模型。该数据集包含了了10万余
名Twitter⽤用户和200余万条社交关系，其中⼤大约5千名⽤用户被标注了了是否为暴暴⼒力力⽤用户。实验结果表
明，AdaGCN的AUC得分为0.80，F1得分为0.47，得分⾼高于所有对⽐比⽅方法，包括传统的GCN模型，
图注意⼒力力⽹网络 (GAT)，标签传播算法（LPA），⽀支持向量量机（SVM）等等。此外，AdaGCN模型的
结果具有最低的标准差，这表明AdaGCN模型具有很强的稳定性。

在线社交平台可以利利⽤用本⽂文提出的⽅方法来更更好地评估、检测暴暴⼒力力⽤用户，防⽌止暴暴⼒力力⽤用户伤害他⼈人

并传播仇恨⾔言论。同时，⾃自适应图卷积神经⽹网络模型也可以⽤用来评估不不同类型的暴暴⼒力力⾔言论造成的社

会影响。技术旨在为⼈人类带来便便利利和幸福，但没有任何东⻄西是尽善尽美的。暴暴⼒力力⾔言论和暴暴⼒力力⽤用户正

是互联⽹网技术⽆无意中带来的问题。我们希望⽤用技术的⽅方法缓解这个问题，给所有⽤用户提供⼀一个⼲干

净、友好的互联⽹网世界。 

关键字：网络暴力用户检测，图卷积神经网络，标签传播算法。
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Hateful User Detection with Adaptive Graph
Convolutional Neural Networks

Xingjian Bai
The Experimental High School Attached to BNU

Abstract

The Internet and online social networks have become a vital part of people’s lives in the recent decade.
However, as online social networks expand, a serious problem is brought in front of us: hateful users.
These people spread negative speech, promote violence, and attack or threaten others on the Internet.
With their hazardous interference in the judgement of the online public, it becomes increasingly
necessary to find an effective way to detect online hateful users.

The requirements of scalability and accuracy in hateful user detection prompt us to seek solutions
from the perspective of machine learning, by which the problem can be formulated as a binary
classification task. In general, whether a user is hateful or not largely depends on two factors:
his/her profile (including his/her demographic features and content from previous posts) and his/her
neighbors in the social network.

Recently, Graph Convolutional Neural Networks (GCNs) have drawn a lot of attention of researchers.
GCNs are a type of neural network models that address the problem of semi-supervised node
classification in graphs. Typical GCN models take both node features and graph structure into
consideration for node classification, and thus are naturally applicable to the task of hateful user
detection. However, existing GCN models fail to consider one essential factor: the weights of edges
in the social network. Specifically, a user is more likely to be affected by neighbors that he/she is
familiar with or shares high similarity with, so the edges between them should have larger weights.
But existing GCN models treat edges in the network unweighted, which cannot fully capture the
structural information and leads to sub-optimal performance.

In this paper, we propose a new GCN model, Adaptive Graph Convolutional Neural Networks
(AdaGCN), to address this problem. Distinct from existing GCNs, in our model, edge weights are set
as trainable variables, which allows the model to adaptively learn the weights between connected
users. Note that though trainable edge weights increase the capacity of our model, the increasing
number of parameters may make the model harder to train and prone to overfitting. To solve this
issue, we design an additional regularization on edge weights based on the label smoothness, which
assumes that adjacent users are more likely to have the same label (i.e., they tend to be both hateful
or both normal). We further employ the Label Propagation Algorithm (LPA) and a leave-one-out loss
function as the implementation of label smoothness regularization, which can be naturally combined
with the loss function of GCN part of our model.

Empirically, we apply AdaGCN on a dataset of Twitter social networks that contains 100k+ Twitter
users and 2m+ social edges, of which approximately 5k users were annotated as hateful or not.
The experimental results show that our model achieves AUC score of 0.80 and F1 score of 0.47,
outperforming all the baselines including the original GCN (Kipf and Welling, 2016), Graph Attention
Networks (Veličković et al., 2017), LPA (Zhu et al., 2003), SVM, etc. Besides, results also show
that the performance of AdaGCN has the lowest standard error, indicating the strong stability of our
model.

Online social platforms can utilize our proposed method to evaluate and detect hateful users. After
detection, they can take necessary measures to warn or punish those users, preventing them from
hurting others and spreading hate speech. Technology is meant to bring convenience and happiness
to humanity, but nothing comes purely beneficial. Hate speech and hateful users are exactly an issue
unintentionally brought along by Informatics technology. We hope that our proposed method will
alleviate this problem and provide a clean and friendly Internet world to all users.

Keywords: hateful user detection; graph convolutional neural networks; label propagation.
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1 Introduction

The world has seen a proliferation of online social networks in the recent decade. As we step
into the Internet Era, the number of Internet users has grown exponentially and cyberspace has
become increasingly important in our lives. In 2018, the number of active Internet users reached
3.8 billion (51% of the world’s population, from statista.com). The idea of the instant messenger
was first brought to the spotlight in 1996 when Mirabilis Company released software called ICQ.
This technology allows people to chat with others and build circles on the Internet regardless of time,
location, and their real identity. After twenty years of development, online social networks have
become a vital part of our lives. Well-known platforms such as Twitter1 and Facebook2 have more
than 500 million active users3, taking up 10% of total Internet users. In China, similar platforms
like Weibo4 and Wechat5 dominate, accounting for 80.9% (from sohu.com) of total Chinese Internet
users.

Hateful Users

Online social networks bring us friends, ideas, and even a chance to build up another personality.
However, along with these benefits, it also causes a serious problem: hateful users. Hateful users
are defined as people who spread negative speech, promote violence, and attack or threaten other
users on the Internet based on race, ethnicity, national origin, sexual orientation, gender, religious
affiliation, age, disability, or disease6. The damage of hateful users and their hate speech is huge.
Since online social networks play such an important role, victims are badly hurt by abusive words or
even becomes hateful users themselves. Moreover, more than 30% of the online social platform users
are teenagers (under 24 years old) 7, who are more vulnerable to aggressive words. For example,
schools often have forums where students can express their opinions. When a student poses some
hateful content on the forum, other students, even including the ones who don’t stir up troubles,
would fight back and cast abusive words on each other. In this regard, hate speech can be seen as
an infectious plague, starting with one and spreading exponentially. What’s even worse is that hate
speech and violence don’t purely stay online but could also cause fighting and bullying in real life. In
spite of the serious damage brought along by hateful users, however, the anonymity and mobility
afforded by the Internet have made hate speech and poisonous opinions effortless in a landscape
beyond the realms of traditional law enforcement (Wulczyn et al., 2017).

Hateful User Detection

Since hateful users and hate speech are seriously hazardous to the online public, detecting hateful
users becomes increasingly urgent. However, manually labeling every piece of online speech is
impractical due to the large amount of content and the expensive cost of human labor. A simple
idea is building lexicons of hate speech as filters to perform content-based search and matching
user-generated content to abusive words, but this method fails to find hate speech that doesn’t contain
commonly used abusive words.

The requirements of scalability and accuracy on hateful user detection models lead us to seek solutions
from the perspective of machine learning, which can automatically obtain statistical patterns from
given data and make predictions on new data points. In this paper, we formulate hateful user detection
as a binary classification problem. Yet, this classification problem is nontrivial, because whether a
user is hateful or not largely depends on the following two complex factors: (1) The attributes of
the user himself/herself, including his/her demographic characteristics (e.g., age, gender, location)
and content from his/her previous posts; (2) The social circle that the user is in, i.e., how his/her
neighbors in social networks behave and how they influence this user. A well-designed hateful user
detection model should consider information from both user profiles and social network structure,
then combine them delicately to achieve high performance in real-time detecting scenarios.

1www.twitter.com
2www.facebook.com
3www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-

worldwide/
4www.weibo.com
5www.wechat.com
6help.twitter.com/en/rules-and-policies/hateful-conduct-policy
7www.statista.com/statistics/274829/age-distribution-of-active-social-media-

users-worldwide-by-platform/
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A Promising Method: Graph Convolutional Neural Networks (GCNs) Because of the important
graphical features carried by online social networks, we consider using Graph Convolutional Neural
Networks (GCNs) as the base model for hateful user detection. GCNs (Kipf and Welling, 2016;
Defferrard et al., 2016; Hamilton et al., 2017; Veličković et al., 2017) are a type of neural network
models that address the problem of semi-supervised node classification in graphs. Generally speaking,
for each node in the graph, GCNs aggregate features of its neighbors and itself (e.g., by averaging
them together), then use the aggregated feature as the new representation for this node. This procedure
can be performed iteratively, for example, for K times, so that the final representation of each node
is the mixture of its neighbors up to K steps away. In this way, GCNs are able to capture both raw
features of nodes and structural information of the graph when learning node representations.

Though GCNs are naturally applicable to hateful user detection, original GCNs fail to consider an
important factor: the weights of edges in the social network. Specifically, for a given user, his/her
neighbors may have different impacts on his mind and behavior when considering the propagation of
public opinions. A user is more likely to be influenced by the neighbors that he/she is familiar or
share high similarity with, so the edges between them should have larger weights in general. However,
existing models simply treat neighbors of a user equally and do not distinguish their importance to the
current user, i.e., treating the social network as an unweighted graph when aggregating neighborhood
information. Such simplification fails to characterize real social networks and may lead to sub-optimal
performance in hateful user detection.

Our Proposed Method: AdaGCN

To address this problem, we propose a new GCN model, Adaptive Graph Convolutional Neural
Networks (AdaGCN), for hateful user detection. A significant difference between AdaGCN and
existing GCNs is that edge weights in the social network are not fixed but set as trainable variables,
which allows our model to adaptively learn the impact factor between each pair of users. However,
this added flexibility of edge weights makes the training process prone to overfitting due to the
increase of model parameters. Therefore, additional regularization on edge weights is needed to
guide the training process and achieve better generalization. We propose taking the label smoothness
(Zhu et al., 2003) as the additional regularization, which assumes that adjacent users in the social
network tend to have similar labels (here the label means whether the user is hateful or not). Under
this assumption, an optimal set of edge weights that satisfies label smoothness should minimize the
total pairwise label discrepancy between users. It can be shown that label smoothness regularization
is equivalent to Label Propagation Algorithm (LPA). To this end, we design a leave-one-out loss
function for LPA to assist learning the edge weights, provideing an extra supervised signal for the
training process.

We apply our model on a real-world dataset containing 100k+ Twitter users and 2m+ social edges,
of which approximately 5k users were annotated as hateful or not. We first conduct an empirical
study to examine the relationship between labels and edges and confirms that the label smoothness
assumption applies to the real scenario. Then we conduct extensive experiments on the dataset.
According to the experimental results, our model achieves AUC score of 0.80 and F1 score of 0.47 in
the detection, which surpasses all of the baselines, including original GCN (Kipf and Welling, 2016),
GAT (Veličković et al., 2017), LPA (Zhu et al., 2003), SVM, etc.. Moreover, the standard error of
Adaptive GCN is the lowest among all methods, indicating the strong stability of our model. The
results demonstrate that our proposed model solves the hateful user detection problem effectively and
outperforms existing state-of-the-art methods by a large margin.

Novelty

Our proposed model, AdaGCN, outstands among all GCN models in the following aspects: (1) We
set edge weights in the social network as trainable to simulate the different impact of neighbors on a
given user; (2) We introduce LPA as well as the leave-one-out loss to impose extra supervision on the
edge weights, which effectively mitigates the issue of overfitting; (3) Our model combines GCNs and
LPA together, and achieves the highest performance among all methods.

Practical Significance

Online social platforms can utilize our proposed method to evaluate and detect hateful users. After
detection, they can take necessary measures to warn or punish those users, preventing them from
hurting others and spreading hate speech. In the meantime, our model can also be used to assess
the social impact of different types of hate speech. Technology is meant to bring convenience and

4

国际竞赛 科研科创 发表论文
关注“有方背景提升”



happiness to humanity, but nothing comes purely beneficial. Hate speech and hateful users are exactly
an issue unintentionally brought along by Informatics technology. We hope that our proposed method
will alleviate this problem and provide a clean and friendly Internet world to all users.

2 Related Work

In this section, we discuss two lines of related work: hateful user detection and graph convolutional
neural networks.

2.1 Hateful User Detection

Hateful user detection aims to distinguish hateful users on the Internet. Existing work in this field can
be divided into two categories: content-based methods and network-based methods.

Content-based methods aim to train a supervised language model given content that users posted on
the Internet as input, then classify unlabeled content as hateful or not. Burnap and Williams (2016)
used lexical features to develop a supervised binary classifier for hateful contents on Twitter. Their
model tends to have high recall but leads to high rates of false positives, since the presence of offensive
words can lead to the misclassification of unhateful tweets. To address this problem, Davidson et al.
(2017) built a multi-classifier to distinguish contents between “hate speech,” “offensive language
only”, and those with neither. Syntactic features have also been leveraged to identify hate speech
better. For example, research suggests that sentences where a relevant noun and verb occur (e.g., kill
and Jews) have a high possibility to be a hate speech (Gitari et al., 2015).

However, these content-based methods have two drawbacks in general. First, due to the subjectiveness
of hate speech, there is hardly a universal feature of hate speech in lexical or syntactic level. A
sentence utilizing irony or sarcasm without any offensive word could also be hateful. For example,

”May I introduce you to the toilet and offer you a one-way visit down the drain?” is an abusive sentence
without any words typically considered as hateful. Second, those methods require concrete texts
as input, which implies that they can only be used to judge given content rather than predict the
behavior of users who have not published any hate speech yet. This feature greatly limits the number
of possible hateful users that can be found.

Network-based methods make use of the relationships among users on social media, i.e., social
networks. They aim to detect hateful users, which are nodes in the network, and this can be
formulated as a semi-supervised node classification task in a graph. An obvious benefit of network-
based methods is that they can predict whether a user is hateful or not without requiring any prior
speech content from him. For example, Ribeiro et al. (2018) employed a node embedding algorithm
that creates a low-dimensional representation for every user. It shows high accuracy and precision
on the task but fails to consider the edge weights of the users’ network, which play a crucial role in
graph-based node classification. Wang et al. (2018) proposed a model called Signed Heterogeneous
Information Network Embedding to extract users’ latent representations from the network and predict
the sign (positive or negative) of unobserved sentiment links between users. But this model mainly
focuses on classifying edges in a graph, which is different from our task of finding hateful users (i.e.,
classifying nodes in a graph).

2.2 Graph Convolutional Neural Networks

Graph Convolutional Neural Networks (GCNs) aim to generalize Convolutional Neural Networks
(CNNs) to the field of graphs. In general, GCNs fall into two categories: spectral-based methods and
spatial-based methods.

Spectral-based GCNs define the graph convolution operation based on spectral graph theory. The first
prominent research on GCNs was presented by Bruna et al. (2013), in which the convolution operator
is defined in the Fourier domain by computing the eigendecomposition of the graph Laplacian matrix.
Henaff et al. (2015) introduced a parameterization of the spectral filters with smooth coefficient,
spatially localized the filters. Defferrard et al. (2016) proposed a new model with fast localized
spectral filtering, avoiding an explicit use of the graph Fourier basis and extra computations. Kipf
and Welling (2016) restricted the filters within the one-step neighborhood around each node, which
further promoted the efficiency and accuracy of GCN models.
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In contrast, spatial-based GCNs define graph convolution operation via aggregating information from
neighbors and don’t need to perform eigendecomposition. Therefore, they are more suitable for large
graphs. A significant challenge for spatial-based GCNs is to define a convolution operator that works
on nodes with different degrees while maintaining the weight-sharing property of CNNs. To address
this problem, Atwood and Towsley (2016) introduced a method to train a specific weight matrix for
each node degree, Niepert et al. (2016) extracted and normalized neighborhoods containing a fixed
number of nodes, and GraphSAGE (Hamilton et al., 2017) sampled a fixed-size neighborhood of each
node and then aggregated the information to the central node. Though the above mentioned spatial-
based GCNs outperform spectral-based GCNs in time complexity and are capable of handling large
graphs, neither of them consideres an important factor of the graph: the edge weights. Specifically,
the strength of impact a node receives from its neighbors largely depends on their similarity, but
existing models simply treat neighbors equally and do not distinguish their importance to the central
node.

It is worth noticing that Graph Attention Networks (Thekumparampil et al., 2018; Veličković et al.,
2017) use an attention mechanism to learn the similarity between nodes. A significant difference
between these attention mechanisms and our work is that attention weights are learned based merely
on feature similarity, while we propose that edge weights should be consistent with the distribution
of labels on the graph, which requires less handcrafting of the attention function and is more task-
oriented.

3 Problem Formulation

We formulate the hateful user detection problem in this paper as follows. Let G = (V, A) be an online
social network, where V = {v1, · · · , vn} is the set of nodes representing users and A ∈ {0, 1}n×n is
the adjacency matrix (including self-loops). Meanwhile, we have a raw user feature matrixX ∈ Rn×k

available (k is the number of features), where the i-th row Xi ∈ Rk represents the feature vector
of user i. In addition, we are aware of the labels of a subset of nodes L, such that L ⊂ V . Label
Yi ∈ {1, 0} for node i ∈ L indicates that whether user i is hateful or not. Given the input above, our
task is to learn a mappingM : v → ŷ, where ŷ ∈ [0, 1] represents the predicted probability that user
v is hateful.

The key notation in this paper is listed in Table 1.

Notation Description
G = (V, A) The social network
V The set of all users

L ⊂ V The set of labeled users
vi The i-th user in V

A ∈ {0, 1}n×n The adjacency matrix of G
X ∈ Rn×k Raw user feature matrix
Y ∈ {0, 1}n Labels of users

X(k) User representation matrix in the k-th layer of GCN
Y (k) Predicted labels in the k-th iteration of LPA
Ni The set of neighbors of user i
D Diagonal degree matrix of A

W (k) Transformation matrix in the k-th layer of GCN

Table 1: Key notation in this paper.

4 Our Approach

In this section, we first briefly introduce the mechanism of Label Propagation Algorithm and Graph
Convolutional Neural Networks, respectively. Then we propose our new model, Adaptive Graph
Convolutional Neural Networks (AdaGCN), which combines GCN and LPA by learning weights of
edges adaptively in the graph.
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Figure 1: The iteration process of LPA. Labeled nodes are marked as 1 (green) or 0 (white), indicating
they are hateful users or not. The initial label of unlabeled users (grey nodes) are set as 0. Then,
the label of every node is updated by averaging the current labels of its neighbors, and the labels of
labeled nodes are reset to their initial values. This process is repeated until the labels converge.

4.1 Label Propagation Algorithm

Label propagation (Zhu et al., 2003) is an lightweight algorithm for semi-supervised node classifica-
tion problem. LPA assumes that adjacent nodes in the graph tend to have the same labels, which is
known as label smoothness assumption. This assumption motivates us to minimize the following
energy function:

E(Y ) =
1

2

∑
i∈V

∑
j∈V

aij (yi − yj)2 , (1)

where aij is ij-th entry of A, i.e., the weight of edge connecting vi and vj . We show by the following
theorem that, in the optimal solution of Y , the predicted label of each unlabeled node should equal
the average label of its neighbors:
Theorem 1. The optimal solution of Y , i.e., argminY E (Y ), satisfies that

yi =
1

|Ni|
∑
j∈V

aijyj , ∀ i ∈ V\L. (2)

Proof. The derivative of function E (Y ) with respect to yi where i ∈ V\L is:

∂E (Y,A)

∂yi
=
∑
j

aij (yi − yj) .

The minimum-energy label function Y ∗ satisfies that

∂E (Y,A)

∂yi
|Y=Y ∗ = 0.

Thus,

y∗i =
1∑
j aij

∑
j

aijy
∗
j =

1

Aii

∑
j

aijy
∗
j ,∀i ∈ V\L.

This theorem indicates that for unlabeled nodes, their labels can be obtained by averaging the labels
of their neighbors. This leads us to the following iterative label propagation method:
Theorem 2. If we set the initial labels of all nodes as

Y (0) =

{
yi, ∀i ∈ L
0, ∀ i ∈ V\L (3)

and then perform the following two steps iteratively:
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1. Do Y (k+1) = D−1AY (k), i.e., propagating the labels of every node to its neighbors. Here
D is the diagonal degree matrix of A, where dii =

∑
j aij and dij = 0 for i 6= j;

2. Reset y(k+1)
i = yi for all i ∈ L, i.e., recovering the labels of labeled nodes to their initial

values;

until Y converges, we will reach the optimal solution as mentioned in Theorem 1.

The proof of Theorem 2 can be found in Zhu (2002). The procedure stated in Theorem 2 is the label
propagation algorithm. We also illustrate LPA in Figure 1.

4.2 Graph Convolutional Neural Networks

GCNs (Kipf and Welling, 2016) are multi-layer feedforward neural networks that propagate node
features on graphs. In each GCN layer, nodes aggregate features of their neighbors to obtain their
new feature vectors. Specifically, the feature propagation scheme in layer k is:

X(k) = σ
(
D−

1
2AD−

1
2X(k−1)W (k)

)
, (4)

where W (k) is the trainable weight matrix in the k-th layer, σ(·) is an activation function such as
ReLU or tanh, X(k) is the nodes representation at layer k, and X(0) = X . The term D−

1
2 is used

to normalize the adjacency matrix and keep the node representation matrix X(k) stable. In order to
keep models consistent, in this paper, we choose to normalize the adjacency matrix in the way similar
to LPA:

X(k) = σ
(
D−1AX(k−1)W (k)

)
. (5)

Finally, the supervised signal for training GCN is defined as follows:

LGCN (W ) =
∑
i∈L

J(ŷi, yi) + λ‖W‖22, (6)

where ŷi is the predicted labels of user i, which is exactly the i-th row of X(K) where K is the
number of GCN layers. J is the cross entropy loss between the predicted labels and ground truth,
‖W‖22 is the L2 regularizer, and λ is the training weight of ‖W‖22.

4.3 Adaptive GCN

When propagating node features, GCNs treat all the edge weights equally. However, edge weights
play an important role in hateful user detection since different neighbors are supposed to have different
impacts on a given user. To address this problem, the key is to make the edge weights trainable
during the optimization process. This means that the loss function in Eq. (6) is revised as follows:

LGCN (W,A) =
∑
i∈L

J(ŷi, yi) + λ‖W‖22, (7)

Note that the difference between Eq. (6) and (7) is that A is trainable and becomes model parameters.
For example, Graph Attention Networks (GAT) (Thekumparampil et al., 2018; Veličković et al.,
2017) use an attention mechanism to learn the edge weights:

hk
i = σ

∑
j∈Ni

α
(
hk−1
i ,hk−1

j

)
Wk−1hk−1

j

 , (8)

where hk
i is the representation vector of user i in the k-th layer of GAT, Ni is the set of neighbors of

user i, and α(·) is an attention function controlling the contribution of neighbor j to user i. However,
the weights learned by the attention function α are only based on the similarity of node features,
which is not necessarily correlated with the similarity of node labels. Since our goal is to predict
node labels, we want to assign weights to edges based on the distribution of hateful users, which is
more task-oriented.

Intuitively, the adjacent nodes with the same labels are likely to have larger edge weights. Therefore,
a naive way to assign edge weights is to simply strengthen edges that connect two nodes with the
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Figure 2: Left: LPA combined with leave-one-out loss. Right: The propagation scheme of AdaGCN,
in which feature vectors and labels are propagated simultaneously.

same label. However, it is worth noticing that most nodes (∼ 95% in our dataset) in the graph are
unlabeled, which greatly limits the number of edge weights that we can assign.

To solve the issue above, we turn to the label propagation algorithm. Note that the results of label
propagation largely depends on the edge weights. Therefpre, LPA may provide us a principled way
to guide the training process of edge weights. But in traditional LPA, the final predicted labels Y (K)

does not provide any signal to update the edge weights (adjacency) matrix A, since the labeled part of
Y (K) equals their ground truth, and we do not know the ground truth of the unlabeled part in Y (K).
Therefore, we propose utilizing the leave-one-out loss.

We describe how leave-one-out loss works as follows. For each labeled node v, we mask its label out,
which means that we treat this labeled node unlabeled. Then we use the labels of remaining nodes to
predict v. The predicting process is similar to LPA, while the only difference is that the label of v
is hidden. Then, we calculate the difference between the predicted label and the original label of v,
which can serve as a supervised signal for regularizing the edge weights:

LLPA(A) =
∑
i∈L

J (yi, li) , (9)

where J is the cross-entropy loss function, and li is the predicted label of the i-th user by LPA after
masking its label out. Given the above regularization, an ideal edge weight matrix A should reproduce
the true label of each masked-out user while satisfying the label smoothness assumption.

We can combine the loss function of GCN and LPA, obtaining the complete loss function for AdaGCN:

LAdaGCN (W,A) = LGCN (W,A) + λ0LLPA(A) + λ1‖W‖22
=
∑
i∈L

J(ŷi, yi) + λ0
∑
i∈L

J (yi, li) + λ1‖W‖22, (10)

where λ0, λ1 are balancing hyperparameters. In the above loss function, the first term LGCN (W,A)
corresponds to the part of GCN that learns the transformation matrix W and edge weights A
simultaneously, while the second term LLPA(A) corresponds to the part of LPA and can be seen as
an added constraint on edge weights A. Therefore, LLPA(A) serves as regularization on A to assist
GCN in training edge weights.

The proposed model AdaGCN is illustrated in Figure 2. The implementation of essential parts
of AdaGCN can be found in the Appendix. We divide the main function of our model into three
programs that run together: layers.py, models.py, and train.py. The first section defines the structure
of GCN layers and LPA layers, the second section builds up the structure of our network, and the
third section feeds the input into our model, calculates the results, and trains model parameters.

5 Experiments

In this section, we first introduce the dataset and baselines. Then, we evaluate our proposed model on
the task of hateful user detection and present the results.
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5.1 Dataset

Our dataset (Ribeiro, 2018) comes from Kaggle8. The dataset was collected by Manoel Horta Ribeiro
et al. in 2018 containing 100,386 Twitter users and 2,286,592 edges, among which 4,970 users
were annotated as hateful or not by crowdsourcing (544 users are detected as hateful). The dataset
also includes a feature vector of length 1,042 for each user, of which most entries are quantitative
indicators such as the number of the user’s followers, followees, and posts. These features are highly
related to a user’s behavior and personality, thus helpful to hatefulness detection. The statistics of the
dataset is shown in Table 2.

Number of users 100,386
Number of labeled users 4,971

Number of detected hateful users 544
Ratio of hateful users 10.9%

Number of edges 2,286,592
Dimension of user features 1,042

Average number of neighbors for a user 45.6

Table 2: Statistics of the dataset.

5.2 Baselines

We use the following methods as baselines in our experiment. The first three baselines only use the
features of each user without the graph structure, whereas the fourth baseline only uses the graph
structure without user features. The rest of our baselines are GCN-based methods.

• Logistic Regression is a standard method for binary classification problems. In our experi-
ment, we use the Logistic Regression function in Python sklearn package and choose the
"lbfgs" solver.

• Support Vector Machine is another supervised learning model for binary classification.
Similarly, we used the package provided by Python sklearn as the implementation of SVM.

• Multi-layer Perceptron is a feedforward artificial neural network model. We use the
package from Python sklearn, and choose the adam solver, relu activation function, and use
one hidden layer with 100 units.

• Label Propagation Algorithm (Zhu et al., 2003) is a semi-supervised node classification
method that we discussed in Section 4.1.

• Graph Convolutional Neural Network (Kipf and Welling, 2016) is another semi-
supervised representation learning method that we discussed in Section 4.2. We use two
hidden layers, and train for 200 epochs.

• Graph Attention Network (Veličković et al., 2017) is a kind of models using attention
mechanism to learn edge weights. By deciding the strength of edges on the graph, this
model effectively utilizes the similarity between nodes’ features. We take the code from
Thekumparampil et al. (2018) and leave the hyperparameters unchanged.

5.3 Experiment Setup

To improve the time and space efficiency of our model, we only select a portion of unlabeled
users from the original dataset to construct the social network. Specifically, we sample s unlabeled
nodes from the set of all unlabeled nodes, and keep all labeled nodes. Edges are then extracted
according to the selected nodes. We set s = 5, 000, which is close to the number of labeled nodes
(4,971). Since unlabeled nodes only contribute to the result by their structural information, these s
unlabeled nodes are chosen according to their degrees in the social network (high degree is preferred).
We divide the labeled nodes into three parts: training set, validation set, and test set, to train the
model, determine optimal parameter settings, and to test the final results, respectively. The ratio of
training/validation/test sets is set as 8 : 1 : 1.

8www.kaggle.com
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We evaluate the performance of models using two metrics: the Area Under Curve (AUC) and the F1
score. Compared with the accuracy metric, AUC and F1 can accurately reflect the performance of
classification models even when the sizes of different classes are unbalanced. We train our model
for 2,000 epochs using Adam Optimizer and record the performance of the test set when the AUC
score of the validation set is maximized. We normalize the feature matrix, transform the input
network into the adjacency matrix, and initialize weights in networks according to Glorot and Bengio
(2010). During the training process, we employ the L2 regularization and dropout technique. Other
hyperparameters, such as the number of GCN layers and LP layers, are listed in the result section.

5.4 Empirical Study

To examine label smoothness assumption, we conduct an empirical study to investigate the relationship
between labels and edges in the Twitter dataset. For every pair of labeled nodes, we examine them
from two aspects: whether they are connected and whether they are both hateful users. The result is
shown in Table 3.

Connected Disconnected Overall Connected rate
Both hateful 6,104 289,288 295,392 2.07%

At least one normal 13,136 24,397,342 24,410,478 0.05%
Overall 19,240 24,686,630 24,705,870 0.08%

Hateful rate 31.70% 1.17% 1.20%

Table 3: Statistics of connectivity and labels for labeled nodes.

Table 3 presents the connectivity and the hatefulness status of every labeled pair. The hateful rate
is defined as the number of "both hateful" pairs divided by the corresponding overall number. The
connected rate is defined as the number of connected pairs divided by the corresponding overall
number.

From Table 3, we can see the connected rate for pairs that are both hateful is 2.07%, which is far
higher than the connected rate for all pairs (0.08%). On the other hand, when two users are connected,
they are more likely to be hateful users (31.70%� 1.20%). Therefore, the statistics show that hateful
users tend to be connected, and vise versa.

5.5 Results

5.5.1 Learning Curves

We present the learning curves of loss, AUC, and F1 on training set and validation set in Figures 3
and 4, respectively. Our model starts with randomly initialized variables for which AUC is about 0.5.
During the training process, the loss of both training and validation decline steadily. The AUC score
and F1 score increase fast at first as our model learns to distinguish hateful users.

Figure 3: Loss, AUC, and F1 score on the training set.

Due to the dropout and L2-loss mechanism, the AUC and F1 score of training and validation data
stay close throughout the process, indicating that our model doesn’t overfit.
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Figure 4: Loss, AUC, and F1 score on the validation set.

5.5.2 Comparison with Baselines

The experimental results of the six baselines and our model are shown in Table 4.

Method AUC F1
Logistic Regression 64.9±3.4 -

Support Vector Machine 50.4±4.5 -
MLP Classifier 65.7±3.5 -

Label Propagation 78.0±1.0 36.6±6.1
Graph Convolutional Neural Network 67.8±3.3 20.9±4.3

Graph Attention Network 70.5±2.1 27.2±3.3
AdaGCN 79.5±0.6 47.4±1.8

Table 4: Mean and standard deviation of AUC and F1 score for all methods. The highest score in
each column is marked in bold.

From Table 4, we can see that models using only node features (LR, SVM, MLP) or graph structure
(LPA) will lead to information loss, and cannot fully extract the feature of hateful users. The result
shows that our proposed AdaGCN model outperforms all six baselines by at least 1.5% in AUC score
and at least 11.2% in F1 score.

5.5.3 Impact of Unlabeled Users

Unlabeled users are used mainly to construct the social network. To investigate their impact on the
performance of our model, we increase the number of unlabeled users from 0 to 10,000. For each
case, we construct the corresponding social network and run our model on it. The results are shown
in Figure 5.

Figure 5: Impact of the number of unlabeled users.

From Figure 5, we can find that sampling approximately 5,000 unlabeled users is optimal. If the
number of unlabeled users is too small, the nodes in the social network would be too few to provide
meaningful information about the social network structure. On the other hand, if the number of
unlabeled users is too large, the learning process will take an extremely long time and the performance
will decrease due to the possible noisy nodes.
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5.5.4 Hyperparameters Sensitivity

We vary the weight of LPA loss (λ0), the dimension of GCN hidden layers, learning rate, the weight
of l2 loss (λ1), dropout rate, and the number of LPA layers, respectively, and the results are shown as
in Figure 6.

Figure 6: Hyperparameters sensitivity.

From Figure 6, we find that all hyperparameters have impact on the performance of our model.
If the dimension of hidden layers is larger than 64, the neural network model would become too
complicated and difficult to train; if it’s smaller, the model does not have sufficient capability to learn
structural information from the graph. As our contribution to the original GCN models, the weight
of LPA loss serves to provide a signal from labels, and we observe that the performance reaches its
peak when λ0 = 1.0. If λ0 is too small, the impact of LPA loss would not be large enough. On the
contrary, if λ0 is too large, the LPA loss would dominate the loss function, which overwhelms the
model and leads to performance decrease.

By comparing the experimental results, we find that when λ0, dimension of hidden layer, learning
rate, λ1, dropout rate, and the number of LPA layers are set as 1.0, 64, 10−3, 5× 10−4, 0.5, and 2,
respectively, the performance of our model reaches the optimum.

6 Conclusion

In this paper, we propose a new model, AdaGCN, to detect hateful users in social networks. Different
from existing GCN models, our proposed AdaGCN treats weights of edges in the social network
trainable and learns transformation matrices and edge weights simultaneously. In order to prevent
overfitting, we design a leave-one-out loss function using label propagation to provide an extra
supervised signal for the training process of our model. By combining LPA and GCN, we achieve the
end-to-end model AdaGCN.

On a dataset of 100,386 Twitter users, our model demonstrates a robust performance of 0.795±0.006
AUC score and 0.474± 0.018 F1 score, surpassing all the baselines. Moreover, the standard error of
AdaGCN is the lowest among all methods, showing the strong stability of our model.

The limitation of our model mainly lies in the time complexity. The original dataset contains 100k+
users, which is too large for our model to be trained within a reasonable time limit. Currently, we deal
with this problem by removing unlabeled users with small degrees from the graph. In the future, we
plan to investigate a more efficient algorithm to sample unlabeled users and maintain the structural
information of the social network as much as possible.

The model proposed in this paper will allow online social platforms to detect hateful users and prevent
their hateful actions in the future. We believe our work will alleviate the hate speech problem and
contribute to a clean and friendly Internet environment.
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Appendix

layers.py

This program serves at the bottom level, constructing the structure of GCN layers and LPA layers.
Plus, it also defines how layers operate data and pass them to the next layer.

i m p o r t numpy as np
i m p o r t t e n s o r f l o w as t f

f l a g s = t f . app . f l a g s
FLAGS = f l a g s . FLAGS

d e f un i fo rm ( shape , s c a l e = 0 . 0 5 , name=None ) :
" " " Uniform i n i t . " " "
i n i t i a l = t f . random_uniform ( shape , minva l=−s c a l e , maxval= s c a l e , d t y p e

= t f . f l o a t 3 2 )
r e t u r n t f . V a r i a b l e ( i n i t i a l , name=name )

d e f g l o r o t ( shape , name=None ) :
" " " G l o r o t & Bengio ( AISTATS 2010) i n i t . " " "
i n i t _ r a n g e = np . s q r t ( 6 . 0 / ( shape [ 0 ] + shape [ 1 ] ) )
i n i t i a l = t f . random_uniform ( shape , minva l=− i n i t _ r a n g e , maxval=

i n i t _ r a n g e , d t y p e = t f . f l o a t 3 2 )
r e t u r n t f . V a r i a b l e ( i n i t i a l , name=name )

d e f z e r o s ( shape , name=None ) :
" " " A l l z e r o s . " " "
i n i t i a l = t f . z e r o s ( shape , d t y p e = t f . f l o a t 3 2 )
r e t u r n t f . V a r i a b l e ( i n i t i a l , name=name )

d e f ones ( shape , name=None ) :
" " " A l l ones . " " "
i n i t i a l = t f . ones ( shape , d t y p e = t f . f l o a t 3 2 )
r e t u r n t f . V a r i a b l e ( i n i t i a l , name=name )

d e f s p a r s e _ d r o p o u t ( x , keep_prob , n o i s e _ s h a p e ) :
" " " Dropout f o r s p a r s e t e n s o r s . " " "
r a n d o m _ t e n s o r = keep_prob
r a n d o m _ t e n s o r += t f . random_uniform ( n o i s e _ s h a p e )
dropout_mask = t f . c a s t ( t f . f l o o r ( r a n d o m _ t e n s o r ) , d t y p e = t f . boo l )
p r e _ o u t = t f . s p a r s e _ r e t a i n ( x , dropout_mask )
r e t u r n p r e _ o u t ∗ ( 1 . / keep_prob )

d e f d o t ( x , y , s p a r s e = F a l s e ) :
" " " Wrapper f o r t f . matmul ( s p a r s e vs dense ) . " " "
i f s p a r s e :

r e s = t f . s p a r s e _ t e n s o r _ d e n s e _ m a t m u l ( x , y )
e l s e :

r e s = t f . matmul ( x , y )
r e t u r n r e s

c l a s s Layer ( o b j e c t ) :
d e f _ _ i n i t _ _ ( s e l f , ∗∗ kwargs ) :

s e l f . v a r s = {}
s e l f . s p a r s e _ i n p u t s = F a l s e

d e f _ c a l l ( s e l f , i n p u t s ) :
r e t u r n i n p u t s

d e f _ c a l l ( s e l f , i n p u t s , i n i t , mask ) :
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r e t u r n i n p u t s

d e f _ _ c a l l _ _ ( s e l f , i n p u t s , i n i t =−1, mask=−1) :
i f i n i t == −1:

o u t p u t s = s e l f . _ c a l l ( i n p u t s )
e l s e :

o u t p u t s = s e l f . _ c a l l ( i n p u t s , i n i t , mask )
r e t u r n o u t p u t s

c l a s s GraphConvo lu t i on ( Layer ) :
d e f _ _ i n i t _ _ ( s e l f , ADJ , inpu t_d im , ou tpu t_d im , p l a c e h o l d e r s , d r o p o u t

= 0 . ,
s p a r s e _ i n p u t s = F a l s e , a c t = t f . nn . r e l u , b i a s = F a l s e ,
f e a t u r e l e s s = F a l s e , ∗∗ kwargs ) :

s u p e r ( GraphConvolu t ion , s e l f ) . _ _ i n i t _ _ (∗∗ kwargs )

i f d r o p o u t :
s e l f . d r o p o u t = p l a c e h o l d e r s [ ’ d r o p o u t ’ ]

e l s e :
s e l f . d r o p o u t = 0 .

s e l f . a c t = a c t
s e l f . a d j = ADJ
s e l f . s p a r s e _ i n p u t s = s p a r s e _ i n p u t s
s e l f . f e a t u r e l e s s = f e a t u r e l e s s
s e l f . b i a s = b i a s

# h e l p e r v a r i a b l e f o r s p a r s e d r o p o u t
s e l f . n u m _ f e a t u r e s _ n o n z e r o = p l a c e h o l d e r s [ ’ n u m _ f e a t u r e s _ n o n z e r o ’ ]

w i th t f . v a r i a b l e _ s c o p e ( ’ _ v a r s ’ ) :
s e l f . v a r s [ ’ w e i g h t s _ 1 ’ ] = g l o r o t ( [ inpu t_d im , o u t p u t _ d i m ] , name

= ’ w e i g h t s _ 1 ’ )
i f s e l f . b i a s :

s e l f . v a r s [ ’ b i a s ’ ] = z e r o s ( [ o u t p u t _ d i m ] , name= ’ b i a s ’ )

d e f _ c a l l ( s e l f , i n p u t s ) :
x = i n p u t s
# d r o p o u t
i f s e l f . s p a r s e _ i n p u t s :

x = s p a r s e _ d r o p o u t ( x , 1− s e l f . d ropou t , s e l f .
n u m _ f e a t u r e s _ n o n z e r o )

e l s e :
x = t f . nn . d r o p o u t ( x , 1− s e l f . d r o p o u t )

# c o n v o l v e
i f n o t s e l f . f e a t u r e l e s s :

p r e _ s u p = d o t ( x , s e l f . v a r s [ ’ w e i g h t s _ 1 ’ ] , s p a r s e = s e l f .
s p a r s e _ i n p u t s )

e l s e :
p r e _ s u p = s e l f . v a r s [ ’ w e i g h t s _ 1 ’ ]

s u p p o r t = d o t ( s e l f . ad j , p re_sup , s p a r s e =True )
o u t p u t = s u p p o r t
r e t u r n s e l f . a c t ( o u t p u t )

c l a s s Labe lP rop ( Layer ) :
# Labe l P r o p a g a t i o n Layer .
d e f _ _ i n i t _ _ ( s e l f , ADJ , ∗∗ kwargs ) :

s u p e r ( Labe lProp , s e l f ) . _ _ i n i t _ _ (∗∗ kwargs )
s e l f . a d j = ADJ

d e f _ c a l l ( s e l f , i n p u t s , i n i t , mask ) :
x = i n p u t s ∗ mask
x = x + i n i t
new_lab = t f . s p a r s e _ t e n s o r _ d e n s e _ m a t m u l ( s e l f . ad j , x )
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r e t u r n new_lab

models.py

This program constructs the structure of AdaGCN, which contains GCN layers and LPA layers
defined in layers.py. This program also defines the loss function, the accuracy, and the output of our
model.

from l a y e r s i m p o r t ∗
from m e t r i c s i m p o r t ∗

f l a g s = t f . app . f l a g s
FLAGS = f l a g s . FLAGS

c l a s s Model ( o b j e c t ) :
d e f _ _ i n i t _ _ ( s e l f , ∗∗ kwargs ) :

a l l owed_kwargs = { ’ name ’ , ’ l o g g i n g ’ }
f o r kwarg i n kwargs . keys ( ) :

a s s e r t kwarg i n a l lowed_kwargs , ’ I n v a l i d keyword argument : ’
+ kwarg

name = kwargs . g e t ( ’ name ’ )
i f n o t name :

name = s e l f . _ _ c l a s s _ _ . __name__ . lower ( )
s e l f . name = name

l o g g i n g = kwargs . g e t ( ’ l o g g i n g ’ , F a l s e )
s e l f . l o g g i n g = l o g g i n g

s e l f . v a r s = {}
s e l f . p l a c e h o l d e r s = {}

s e l f . g c n _ l a y e r s = [ ]
s e l f . g c n _ a c t i v a t i o n s = [ ]
s e l f . g c n _ i n p u t s = None
s e l f . g c n _ o u t p u t s = None

s e l f . l p _ l a y e r s = [ ]
s e l f . l p _ a c t i v a t i o n s = [ ]
s e l f . l p _ i n p u t s = None
s e l f . l p _ o u t p u t s = None

s e l f . l o s s = 0
s e l f . a c c u r a c y = 0
s e l f . o p t i m i z e r = None
s e l f . op t_op = None

d e f _ b u i l d ( s e l f ) :
r a i s e N o t I m p l e me n t e d E r ro r

d e f b u i l d ( s e l f ) :
" " " Wrapper f o r _ b u i l d ( ) " " "
wi th t f . v a r i a b l e _ s c o p e ( s e l f . name ) :

s e l f . _ b u i l d ( )

# B u i l d s e q u e n t i a l l a y e r model : GCN
s e l f . g c n _ a c t i v a t i o n s . append ( s e l f . g c n _ i n p u t s )
f o r l a y e r i n s e l f . g c n _ l a y e r s :

h i dd en = l a y e r ( s e l f . g c n _ a c t i v a t i o n s [ −1])
s e l f . g c n _ a c t i v a t i o n s . append ( h id de n )

s e l f . g c n _ o u t p u t s = s e l f . g c n _ a c t i v a t i o n s [−1]

# B u i l d s e q u e n t i a l l a y e r model : LP
s e l f . l p _ a c t i v a t i o n s . append ( s e l f . l p _ i n p u t s )
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f o r l a y e r i n s e l f . l p _ l a y e r s :
h i dd en = l a y e r ( s e l f . l p _ a c t i v a t i o n s [ −1] , s e l f . l p _ i n p u t s , s e l f .

p l a c e h o l d e r s [ ’ l a b e l s _ m a s k 2 ’ ] )
s e l f . l p _ a c t i v a t i o n s . append ( h i d de n )

s e l f . l p _ o u t p u t s = s e l f . l p _ a c t i v a t i o n s [−1]

# S t o r e model v a r i a b l e s f o r ea sy a c c e s s
v a r i a b l e s = t f . g e t _ c o l l e c t i o n ( t f . GraphKeys . GLOBAL_VARIABLES,

scope = s e l f . name )
s e l f . v a r s = { v a r . name : v a r f o r v a r i n v a r i a b l e s }

s e l f . _ l o s s ( )
s e l f . op t_op = s e l f . o p t i m i z e r . min imize ( s e l f . l o s s )

s e l f . _ a c c u r a c y ( )

d e f p r e d i c t ( s e l f ) :
p a s s

d e f _ l o s s ( s e l f ) :
r a i s e N o t I m p l e me n t e d E r ro r

d e f _ a c c u r a c y ( s e l f ) :
r a i s e N o t I m p l e me n t e d E r ro r

c l a s s AdaGCN( Model ) :
d e f _ _ i n i t _ _ ( s e l f , ADJ , p l a c e h o l d e r s , inpu t_d im , ∗∗ kwargs ) :

s u p e r (AdaGCN , s e l f ) . _ _ i n i t _ _ (∗∗ kwargs )

s e l f . g c n _ i n p u t s = p l a c e h o l d e r s [ ’ f e a t u r e s ’ ]
s e l f . l p _ i n p u t s = p l a c e h o l d e r s [ ’ l a b e l s ’ ]
s e l f . i n p u t _ d i m = i n p u t _ d i m
s e l f . a d j = ADJ
s e l f . o u t p u t _ d i m = p l a c e h o l d e r s [ ’ l a b e l s ’ ] . g e t _ s h a p e ( ) . a s _ l i s t ( ) [ 1 ]
s e l f . p l a c e h o l d e r s = p l a c e h o l d e r s
s e l f . o p t i m i z e r = t f . t r a i n . AdamOptimizer ( l e a r n i n g _ r a t e =FLAGS .

l e a r n i n g _ r a t e )
s e l f . b u i l d ( )

d e f _ l o s s ( s e l f ) :
# Weight decay l o s s
f o r v a r i n s e l f . g c n _ l a y e r s [ 0 ] . v a r s . v a l u e s ( ) :

s e l f . l o s s += FLAGS . w e i g h t _ d e c a y ∗ t f . nn . l 2 _ l o s s ( v a r )

# Cross e n t r o p y e r r o r
s e l f . l o s s += m a s k e d _ s o f t m a x _ c r o s s _ e n t r o p y ( s e l f . g c n _ o u t p u t s , s e l f .

p l a c e h o l d e r s [ ’ l a b e l s ’ ] ,
s e l f . p l a c e h o l d e r s [ ’

l a b e l s _ m a s k ’ ] )
s e l f . l o s s += m a s k e d _ s o f t m a x _ c r o s s _ e n t r o p y ( s e l f . l p _ o u t p u t s , s e l f .

p l a c e h o l d e r s [ ’ l a b e l s ’ ] ,
s e l f . p l a c e h o l d e r s [ ’

l a b e l s _ m a s k ’ ] ) ∗
FLAGS . l p _ w e i g h t

d e f _ a c c u r a c y ( s e l f ) :
s e l f . a c c u r a c y = masked_accuracy ( s e l f . g c n _ o u t p u t s , s e l f .

p l a c e h o l d e r s [ ’ l a b e l s ’ ] , s e l f . p l a c e h o l d e r s [ ’ l a b e l s _ m a s k ’ ] )

d e f _ b u i l d ( s e l f ) :
s e l f . g c n _ l a y e r s . append ( GraphConvo lu t i on (

ADJ= s e l f . ad j ,
i n p u t _ d i m = s e l f . inpu t_d im ,
o u t p u t _ d i m =FLAGS . hidden1 ,
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p l a c e h o l d e r s = s e l f .
p l a c e h o l d e r s ,

a c t = t f . nn . r e l u ,
d r o p o u t =True ,
s p a r s e _ i n p u t s =True ) )

s e l f . g c n _ l a y e r s . append ( GraphConvo lu t i on (
ADJ= s e l f . ad j ,
i n p u t _ d i m =FLAGS . hidden1 ,
o u t p u t _ d i m = s e l f . ou tpu t_d im ,
p l a c e h o l d e r s = s e l f .

p l a c e h o l d e r s ,
a c t = lambda x : x ,
d r o p o u t =True ) )

s e l f . l p _ l a y e r s . append ( Labe lP rop ( ADJ= s e l f . a d j ) )
s e l f . l p _ l a y e r s . append ( Labe lP rop ( ADJ= s e l f . a d j ) )

d e f p r e d i c t ( s e l f ) :
r e t u r n t f . nn . so f tmax ( s e l f . g c n _ o u t p u t s )

train.py

This program serves to feed the input into our model, train model parameters, and calculate the
results.

i m p o r t t e n s o r f l o w as t f
i m p o r t numpy as np
i m p o r t s c i p y as sp
i m p o r t pandas as pd
i m p o r t csv
i m p o r t ne tworkx as nx
i m p o r t t ime
i m p o r t s y s
from s k l e a r n . m e t r i c s i m p o r t r o c _ a u c _ s c o r e
from s k l e a r n . m e t r i c s i m p o r t f 1 _ s c o r e
from m e t r i c s i m p o r t ∗

from u t i l s i m p o r t ∗
from models i m p o r t AdaGCN

# Load d a t a
a d j = g r a p h _ p a r t i t i o n ( ’ d a t a / u s e r s _ c l e a n _ m o d i f i e d . graphml ’ )
a d j = t u p l e _ t o _ s p a r s e t e n s o r ( a d j )
y , f e a t u r e s , t r a i n _ m a s k , val_mask , t e s t _ m a s k = f e a t u r e s _ p a r t i t i o n ( ’ d a t a /

u s e r s _ n e i g h b o r h o o d _ a n o n _ m o d i f i e d . csv ’ )
y _ t r a i n = ( np . eye ( t r a i n _ m a s k . shape [ 0 ] ) ∗ t r a i n _ m a s k ) . d o t ( y )
y _ v a l = ( np . eye ( val_mask . shape [ 0 ] ) ∗ val_mask ) . d o t ( y )
y _ t e s t = ( np . eye ( t e s t _ m a s k . shape [ 0 ] ) ∗ t e s t _ m a s k ) . d o t ( y )

va l_mask = val_mask . r e s h a p e ( 1 , −1) [ 0 ]
t e s t _ m a s k = t e s t _ m a s k . r e s h a p e ( 1 , −1) [ 0 ]
t r a i n _ m a s k = t r a i n _ m a s k . r e s h a p e ( 1 , −1) [ 0 ]

# S e t t i n g s
f l a g s = t f . app . f l a g s
FLAGS = f l a g s . FLAGS
f l a g s . DEFINE_str ing ( ’ d a t a s e t ’ , ’ c o r a ’ , ’ D a t a s e t s t r i n g . ’ )
f l a g s . DEFINE_str ing ( ’ model ’ , ’ gcn ’ , ’ Model s t r i n g . ’ )
f l a g s . DEFINE_float ( ’ l e a r n i n g _ r a t e ’ , None , ’ I n i t i a l l e a r n i n g r a t e . ’ )
f l a g s . DEFINE_integer ( ’ epochs ’ , None , ’ Number o f epochs t o t r a i n . ’ )
f l a g s . DEFINE_integer ( ’ h idden1 ’ , None , ’ Number o f u n i t s i n h i dd en l a y e r 1 .

’ )
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f l a g s . DEFINE_float ( ’ d r o p o u t ’ , None , ’ Dropout r a t e (1 − keep p r o b a b i l i t y ) .
’ )

f l a g s . DEFINE_float ( ’ w e i g h t _ d e c a y ’ , None , ’ Weight f o r L2 l o s s on embedding
m a t r i x . ’ )

f l a g s . DEFINE_float ( ’ l p _ w e i g h t ’ , None , ’ Weight f o r l p l o s s ’ )

d e f oneRun ( l e a r n i n g _ r a t e , epochs , h idden1 , d ropou t , we igh t_decay ,
l p _ w e i g h t , Seed , c n t ) :
# S e t random seed
s ee d = Seed
np . random . s ee d ( seed )
t f . s e t _ r a n d o m _ s e e d ( s eed )

FLAGS . l e a r n i n g _ r a t e = l e a r n i n g _ r a t e
FLAGS . epochs = epochs
FLAGS . h idden1 = h idden1
FLAGS . d r o p o u t = d r o p o u t
FLAGS . w e i g h t _ d e c a y = w e i g h t _ d e c a y
FLAGS . l p _ w e i g h t = l p _ w e i g h t

model_func = AdaGCN

# D e f i ne p l a c e h o l d e r s
p l a c e h o l d e r s = {

’ f e a t u r e s ’ : t f . s p a r s e _ p l a c e h o l d e r ( t f . f l o a t 3 2 , shape = t f . c o n s t a n t (
f e a t u r e s [ 2 ] , d t y p e = t f . i n t 6 4 ) ) ,

’ l a b e l s ’ : t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , shape =( None , y _ t r a i n . shape
[ 1 ] ) ) ,

’ l a b e l s _ m a s k ’ : t f . p l a c e h o l d e r ( t f . i n t 3 2 ) ,
’ l a b e l s _ m a s k 2 ’ : t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , shape =( None , y _ t r a i n .

shape [ 1 ] ) ) ,
’ d r o p o u t ’ : t f . p l a c e h o l d e r _ w i t h _ d e f a u l t ( 0 . , shape = ( ) ) ,
’ n u m _ f e a t u r e s _ n o n z e r o ’ : t f . p l a c e h o l d e r ( t f . i n t 3 2 ) # h e l p e r

v a r i a b l e f o r s p a r s e d r o p o u t
}

# C r e a t e model
model = model_func ( ADJ= adj , p l a c e h o l d e r s = p l a c e h o l d e r s , i n p u t _ d i m =

f e a t u r e s [ 2 ] [ 1 ] , l o g g i n g =True )

# I n i t i a l i z e s e s s i o n
s e s s = t f . S e s s i o n ( )

# D e f i ne model e v a l u a t i o n f u n c t i o n
d e f e v a l u a t e ( f e a t u r e s , l a b e l s , mask , p l a c e h o l d e r s ) :

t _ t e s t = t ime . t i me ( )
f e e d _ d i c t _ v a l = c o n s t r u c t _ f e e d _ d i c t ( f e a t u r e s , l a b e l s , mask ,

p l a c e h o l d e r s )
o u t s _ v a l = s e s s . run ( [ model . l o s s , model . a c cu r ac y , model . p r e d i c t ( )

] , f e e d _ d i c t = f e e d _ d i c t _ v a l )
r e t u r n o u t s _ v a l [ 0 ] , o u t s _ v a l [ 1 ] , o u t s _ v a l [ 2 ] , ( t im e . t ime ( ) −

t _ t e s t )

# I n i t v a r i a b l e s
s e s s . run ( t f . g l o b a l _ v a r i a b l e s _ i n i t i a l i z e r ( ) )

result_max_AUC = 0 . 6
test_AUC = 0 , t e s t _ f 1 = 0 , t r a i n _ l o s s = [ ]
t r a i n _ a u c = [ ] , t r a i n _ f 1 = [ ]
v a l _ a u c = [ ] , v a l _ f 1 = [ ] , v a l _ l o s s = [ ]

# T r a i n model
f o r epoch i n r a n g e (FLAGS . epochs ) :
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t = t im e . t ime ( )
# C o n s t r u c t f e e d d i c t i o n a r y
f e e d _ d i c t = c o n s t r u c t _ f e e d _ d i c t ( f e a t u r e s , y _ t r a i n , t r a i n _ m a s k ,

p l a c e h o l d e r s )
f e e d _ d i c t . u p d a t e ( { p l a c e h o l d e r s [ ’ d r o p o u t ’ ] : FLAGS . d r o p o u t } )

# T r a i n i n g s t e p
o u t s = s e s s . run ( [ model . opt_op , model . l o s s , model . a c c u r a c y ] ,

f e e d _ d i c t = f e e d _ d i c t )

# V a l i d a t i o n
c o s t , acc , pred , d u r a t i o n = e v a l u a t e ( f e a t u r e s , y_va l , val_mask ,

p l a c e h o l d e r s )
val_AUC , val_Acc , va l_F1 = calc_AUC ( y_val , pred , va l_mask )
i f epoch > 3 0 :

i f val_AUC > result_max_AUC :
result_max_AUC = val_AUC
t e s t _ c o s t , t e s t _ a c c , t e s t _ p r e d , d u r a t i o n = e v a l u a t e (

f e a t u r e s , y _ t e s t , t e s t _ m a s k , p l a c e h o l d e r s )
test_AUC , t e s t _ a c c , t e s t _ f 1 = calc_AUC ( y _ t e s t , t e s t _ p r e d ,

t e s t _ m a s k )

# Reco rd ing
i f ( epoch +1) % 10 == 0 :

p r i n t ( " [ t u r n ] " , ’%02d ’ % ( c n t ) ,
" Epoch : " , ’%04d ’ % ( epoch + 1) ,
" t r a i n _ l o s s =" , " { : . 5 f } " . f o r m a t ( o u t s [ 1 ] ) ,
" v a l _ l o s s =" , " { : . 5 f } " . f o r m a t ( c o s t ) ,
" val_AUC=" , " { : . 5 f } " . f o r m a t ( val_AUC ) ,
" v a l _ f 1 =" , " { : . 5 f } " . f o r m a t ( va l_F1 ) ,
" t im e =" , " { : . 5 f } " . f o r m a t ( t im e . t ime ( ) − t ) )

v a l _ a u c . append ( val_AUC )
v a l _ f 1 . append ( va l_F1 )
v a l _ l o s s . append ( c o s t )
c o s t , acc , pred , d u r a t i o n = e v a l u a t e ( f e a t u r e s , y _ t r a i n ,

t r a i n _ m a s k , p l a c e h o l d e r s )
train_AUC , t r a i n _ A c c , t r a i n _ F 1 = calc_AUC ( y _ t r a i n , pred ,

t r a i n _ m a s k )
t r a i n _ a u c . append ( train_AUC )
t r a i n _ f 1 . append ( t r a i n _ F 1 )
t r a i n _ l o s s . append ( o u t s [ 1 ] )

i f ( epoch +1) % 100 == 0 :
s t d _ o u t p u t s ( y_val , pred , va l_mask )
p r i n t ( " p r e answer : " , " { : . 5 f } " . f o r m a t ( test_AUC ) , " { : . 5 f } " .

f o r m a t ( t e s t _ f 1 ) , " { : . 5 f } " . f o r m a t ( result_max_AUC ) )

p r i n t ( " O p t i m i z a t i o n F i n i s h e d ! " )
p r i n t ( " answer : " , " { : . 5 f } " . f o r m a t ( test_AUC ) , " { : . 5 f } " . f o r m a t ( t e s t _ f 1 )

)
p r i n t ( " t r a i n _ a u c =" , t r a i n _ a u c )
p r i n t ( " t r a i n _ f 1 =" , t r a i n _ f 1 )
p r i n t ( " t r a i n _ l o s s =" , t r a i n _ l o s s )
p r i n t ( " v a l _ a u c =" , v a l _ a u c )
p r i n t ( " v a l _ f 1 =" , v a l _ f 1 )
p r i n t ( " v a l _ l o s s =" , v a l _ l o s s )
p r i n t ( ’END! ’ )
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Introduction of Participant 

Xingjian Bai is currently attending 12th grade in the Experimental High 
School Attached to Beijing Normal University. He has a wide range of 
interests, thinks actively, and loves mathematics and computer science. 
He is the chairman of both the Computer Club and the Humanities 
Institute of his school. Having studied algorithms and programming for 5 
years.

 

• Invited to attend the Canadian Computing Olympiad (CCO), the highest 
level programing competition in Canada, in May 2018; Achieved the 
highest score among all the competitors, including all four national team 
members in Canada. 

• Won the silver medal of the National Olympiads of Informatics (NOI) 2018. 

• Won the 3rd place, first prize in the National Olympiads of Informatics 
Provincial (NOIP). 

• Participated in the USA Computing Olympiads (USACO) Open and 
achieved a full score in March 2019; 


• Invited as the only foreign participant to attend the USA Computing 
Olympiad Training Camp in May 2019 (only top 25 US high school students 
can participate, to select the USA national team). 

• Won the Finalist Award (7%) in the High School Mathematical Contest in 
Modeling (HiMCM) 2018. 

• Won first place in the Math League 2018 in China Region. 

• Won the Distinction Honor Roll (1%) in American Mathematics Competition 
(AMC) 2019, and scored 8 points in AIME. 

• Won the Golden Sail Award (top 2%) for two consecutive years. This 
scholarship is offered by the Experimental High School Attached to BNU 
to encourage students who are well-rounded and have distinguished 
achievements in extracurricular competitions.
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致谢信

2018年年2⽉月10⽇日，⼀一个名叫Ted Senior的22岁男孩在林林地上吊⾃自杀，原因

是⼀一些⼈人在社交媒体上恶意地分享和评判他与⼀一名⼥女女孩的聊天内容。在我身

边，我的同学好友在学校论坛发表观点，但是遭受匿匿名的辱骂和攻击，这种羞

辱让他感到⾮非常痛苦。我深深地被这些可恨的⾏行行为和可怕的后果所触动。计算

机科学带来了了信息时代，社交⽹网络改变了了我们的⽣生活，我们期望技术会让世界

更更美好。但没有什什么是尽善尽美的。⽹网络暴暴⼒力力是信息技术⽆无意中带来的⼀一个问

题，我渴望找到⼀一种⽅方法来发现和控制它们。 

感谢王鸿伟⽼老老师引导我探索这个领域，⽆无偿的给予我帮助。王鸿⽼老老师⽬目前

在斯坦福做博⼠士后，在这个领域有深厚的积累。⾼高⼀一时我学习过⼈人⼯工智能的课

程，学会了了构建⼈人⼯工神经⽹网络。在王⽼老老师带领下，我⽤用两个⽉月时间研究图神经

⽹网络和标签传播算法相关知识，然后⽤用两个⽉月时间编程实验，逐步构建和完善

新的模型，最后⽤用⼀一个⽉月时间撰写论⽂文。因为时差的缘故，王⽼老老师经常在深夜

给我指导。他耐⼼心指导我按照严格的学术要求进⾏行行实验和完成论⽂文。王⽼老老师的

博学和严谨，给我树⽴立了了榜样，他给予我的学术训练，将使我终身受益。

最后，我要感谢丘成桐中学科学奖，让我在喜爱的领域展开了了⼀一次激动⼈人

⼼心的探索。中学时代，我最⼤大的乐趣是编程算法和数学。C++、Html、CSS、

Javascript 、Go、Python，⼀一⻔门⼜又⼀一⻔门的编程语⾔言成为我思考的延伸和解决问

题的⼯工具。当我学习了了越来越多的编程语⾔言，我体会到算法是⼀一切程序的精

髓，是抽象和现实之间的桥梁梁。我们要⽤用算法模型将现实问题归纳、抽象，变

成计算⼒力力可以应⽤用的形式。数学是算法的底层规律律。在算法设计课上，我接触

了了群论中的Polya引理理，计算⼏几何中的⾟辛普森积分，数论中的莫⽐比乌斯反演。傅

理理叶变换把函数卷积成优雅简洁的形式，给我的震撼不不亚于魔术师凭空变出⼀一

朵玫瑰。这⼀一次课题研究，让我进⼀一步思考如何运⽤用数学规律律完善编程算法，

然后去解决现实问题，收获很⼤大。

再⼀一次感谢在课题研究中给予我帮助的⽼老老师和家⼈人！
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参赛队员介绍

⽩⾏健，男，北京师范⼤学附属实验中学国际部⾼三学⽣，兴

趣⼴泛，思维活跃，热爱数学和计算机科学。担任学校计算机社社

长和⼈⽂社社长。

•2018年5⽉受邀参加加拿⼤信息学奥林匹克竞赛（CCO）决赛及国

家队集训营，获得决赛⾦奖第⼀名。

•2018年7⽉获得中国信息学奥林匹克竞赛决赛（NOI）银牌。

•2018年11⽉获得中国信息学联赛（NOIP）北京市提⾼组⼀等奖第3

名。

•2019年1⽉参加美国信息学奥林匹克竞赛(USACO)公开赛获得满

分，5⽉作为唯⼀的外国学⽣受邀参加美国国家队集训营（USACO

前25名美国中学⽣参加,选拔国家队成员）。

•2018年获得美国⾼中⽣数学建模竞赛（HiMCM）Finalist奖项（⼀

等奖7%）。

•2018年获得美国数学⼤联盟杯（Math League）中国赛区第⼀名。

•2018年获得美国数学竞赛(AMC) Distinction Honor Roll（荣誉奖

1%），AIME获得8分。

•2017、2018连续两年获得北京师范⼤学附属实验中学⾦帆奖（top 

2%）。
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