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Fourth Moments and Larsen’s Alternative

Cheng Qin

Abstract

The representation theory of compact infinite groups is a well-known
subject. However, attempts at classifying compact groups are explored
to a lesser extent. In this article, we will be examining one such method
of classification: Larsen’s alternative. This will in turn alert us to the
significance of fourth moments in determining the identity of compact
groups. This article will define fourth moments and present the proof
of Larsen alternative, following [4, 6]. We will also calculate the fourth
moments of several important compact groups.
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ward1 Introduction

Let G ⊂ GLn(C) be a compact matrix group, endowed with its Haar measure
µ. We define the fourth moment of this inclusion as

M4(G,GLn(C)) =

∫
G

|Tr(g)|4dµ(g). (1)

Using representation theory, we can give another expression of the fourth mo-
ment. In fact, let V = Cn be the natural representation of G. Then the fourth
moment can be calculated by

M4(G,GLn(C)) = dimC EndG(End(V )), (2)

where End(V ) is a representation of G induced by the representation of G
on V , and EndG(End(V )) is the space of automorphisms of End(V ) as G-
representations. This result, which is proved in Proposition 3.1, tells us that
the fourth moment is in fact a positive integer. In [4], Katz wrote down a prove
of criterion, called Larsen’s alternative, which, by calculating the fourth mo-
ments, determines the nature of the group. In this article, we shall follow the
formulation and proof given in [6], to state and prove the Larsen’s alternative.

Theorem (Larsen’s Alternative) Let n > 2. Let G be a compact subgroup
of SU(n). If the fourth moment of G is equal to 2 then either G = SU(n) or G
is a finite group.

The proof of this theorem, following [6], is given in Section 3.2. There are
applications of Larsen’s alternative. See, for example, [4], for the application of
Larsen’s alternative on the study of Lefschetz pencils, and [6] for the application
on Kloosterman sums.

The Larsen’s alternative stresses the importance of the fourth moments. In
this article, we calculate the fourth moment of some classical groups. The results
we obtained are as follows.

Theorem The permutation group Sn can be viewed as a subgroup of GLn(C)
by realising the elements as permutation matrices. The fourth moment of this
inclusion is M4(Sn, GLn(C) = 15.

Theorem The fourth moments of finite subgroups of SO(3,R), viewed as sub-
groups of GL3(C), is as follows.
(1) The fourth moment of the cyclic group with n elements Cn:

M4(Cn, GLn(C)) =


41, if n = 2

27, if n = 3

21, if n = 4

19, if n > 4

.

(2) The fourth moment of the dihedral group with n = 2k elements D2k:

2



20
21

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
wardM4(D2k, GLn(C)) =


21, if n = 2

14, if n = 3

11, if n = 4

10, if n > 4

.

(3) The fourth moment of the tetrahedral group T ∼= A4 is 7.
(4) The fourth moment of the octahedral group O ∼= S4 is 4.
(5) The fourth moment of the icosahedral group I ∼= A5 is 3.

The detail of the calculation is exhibited in Section 4.4.
We also calculate the fourth moment of O(n,R) ⊂ GLn(C) and SO(n,R) ⊂

GLn(C).

Theorem Let n ≥ 2 be an positive integer.
(1) The fourth moment of O(n,R) ⊂ GLn(C) is 3 for any n.

(2) M4(SO(n,C), GLn(C)) =


6, if n = 2

4, if n = 4

3, if n 6= 2, 4

.

This result is obtained by examining carefully the irreducible decomposition
of End(V ) as O(n,R)-represenetaions (resp. SO(n,R)-representations). See
Section 4.5 for detail. By this result, we can get the following result whose
statement does not require representation theory and which is of its own interest.

Corollary 1.1 Let

O(n)− := {g ∈ O(n,R) : det g = −1}

be endowed with the measure induced from the Haar measure of O(n,R). Then

∫
O(n)−

|Tr(g)|4dg =


0, if n = 2

1, if n = 4

3/2, if n 6= 2, 4

. (3)

The structure of this article is as follows. In Section 2, we will recall some
basic results of representation theory of finite groups, compact matrix groups
and Lie algebras. The content is totally classical and we refer to [1, 2, 3, 5]
for main references. In Section 3, we shall present the fourth moment and
the proof of Larsen’s alternative following [4, 6]. In the last section, we will
calculate in detail the fourth moment of some classical groups, using principally
representation theory.

2 Representation Theory

In this section, we will present some basic knowledge in representation the-
ory which will served as a tool to the proof of Larsen’s alternative (Section 3)
and the calculation of the fourth moments (Section 4). We will in particular
present the representation theory of finite groups and character theory [3], the
representation theory of compact groups [5] and of Lie algebras [2].

3
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Definition 2.1 Let G be a group. A k-representation of G is the data of a
k-vector space V and of a group homomorphism ρ : G→ GL(V ).

Remark 2.1 For the sake of convenience, one often writes g.v for ρ(g)v. Then
the definition of representation says that (gh).v = g.(h.v).

Definition 2.2 Let V be a representation of a group G, W is called a subrep-
resentation if for all g ∈ G and w ∈W , gw ∈W

Definition 2.3 A representation V of a group G is called irreducible if the only
subrepresentations of V are {0} and itself.

Definition 2.4 Let G be a group. Let V and W both be representations of G.
A map φ : V →W is called a homomorphism of G-representations, if:

1. φ : V →W is a linear map, and
2. For all g ∈ G, v ∈ V , φ(gv) = gφ(v).

Remark 2.2 Let φ : V → W be a homomorphism of G − representations.
Then kerφ and Imφ are subrepresentations of V and W respectively.

Definition 2.5 Two G-representations V and W are isomorphic to one another
if there exists an homomorphism between them φ : V → W that is invertible.
This will be denoted as V ∼= W .

2.2 Schur’s Lemma

Lemma 2.1 (Schur) Let G be a group and V and W be irreducible, finitely
dimensional representations of G. Let φ : V →W be a homomorphism between
representations. Then:

1. Either φ is an isomorphism or φ = 0.
2. Assume k is an algebraically closed field (e.g. k = C) If V = W acting

on k, then φ = λIdV .

Proof Assume that φ 6= 0, then kerφ 6= V . By remark 2.2, kerφ is a subrep-
resentation of V. Since V is irreducible, and kerφ 6= V , then kerφ = {0}. So,
φ is injective. We also note that Imφ 6= 0 and W is irreducible. By remark 2.2,
since Imφ is a subrepresentation of W, Imφ = W . So φ is surjective. Since φ is
both injective and surjective, it is bijective and thus is an isomorphism.

To prove 2, let φ : V → V be a linear map. Then we know that φ is
bijective if and only if detφ 6= 0. Let us now examine the φ − λId: since k
is algebraically closed and the determinant function is essentially a polynomial
for λ, there exists λ ∈ k such that det(φ − λId) = 0. For this value of λ ∈ k,
φ− λId is thus not an isomorphism.

Since it is clear that φ−λId : V → V is a homomorphism of representations,
but φ− λId is not an isomorphism, so φ− λId = 0 i.e. φ = λId.

�
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V is irreducible, then dim(V ) = 1.

Proof Let g ∈ G. We will show that ρ(g) : V → V is a homomorphism of
representations, where ρ(g) is the representation matrix of g, in fact, by the
commutativity of G:

∀h ∈ G, v ∈ V, ρ(g)(hv) = hρ(g)v = hρ(g)(v).

So ρ(g) is a homomorphism of representations. Since V is irreducible, by
Schur’s lemma we have ρ(g) = λId for some constant λ. Hence, all values h ∈ G
act on V as scalars.

Hence if v 6= 0, v ∈ V , then hv (∀h ∈ G) is a 1 dimensional subspace spanned
by a single line described by V . However, we know that V is irreducible, hence
dim(V ) = 1.

�

2.3 Maschke’s Theorem

Let V be a C-representation of a finite group G.

Definition 2.6 Let (·, ·) be a Hermitian form on V . This form is called G-stable
if for all g ∈ G and x, y ∈ V , we have (gx, gy) = (x, y).

Lemma 2.2 Let (·, ·) be a G-stable Hermitian form on V . Let W ⊂ V be a
subrepresentation, then W⊥ is a subrepresentation of V.

Proof Let w ∈ W and w′ ∈ W⊥, we want to prove that for all g ∈ G,
gw′ ∈ W ′. Since for all w ∈ W , gw ∈ W , there exists g such that w = g · wi,
wi ∈W .

(w, g · w′) = (g · wi, g · w′) = (wi, w
′) = 0

Hence, for all w′, gw′ ∈W ′ and hence W⊥ is a subrepresentation of V .
�

Lemma 2.3 Let V be a non-irreducible representation of finite group G so that
ther exists a subrepresentation W ⊂ V where W 6= 0, V . Then there exists
W ′ ⊂ V such that V = W ⊕W ′.

Proof Let (·, ·) be a Hermitian form (not necessarily G-stable) on V . Let us
define another form (·, ·)′ as for all x, y ∈ V ,

(x, y)′ =
1

|G|
∑
g∈G

(gx, gy)

.
We can verify that (·, ·)′ is indeed a Hermitian form.
We will now try to prove (·, ·)′ is G-stable:

(gx, gy)′ =
1

|G|
∑
h∈G

(hgx, hgy) =
1

|G|
∑
k∈G

(kx, ky) = (x, y)′

5
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Since W is a subrepresentation of V and (·, ·)′ is G-invariant, we may ap-
ply Lemma 2.2 to show that there exists a subrepresentation W ′ = W⊥ ⊂ V
satisfying V = W ⊕W⊥. Hence, lemma 2.3 is proved. �

Theorem 1 (Maschke) Let V be a representation of finite group G. Then V
can be written as a direct sum of irreducible representations:

V =

r⊕
i=1

λiVi

Where λi, r ∈ N. Furthermore, this decomposition is unique up to ordering
and isomorphism.

Proof Suppose V is irreducible. Then V = V , which is a unique direct sum
of irreducible representations.

If V is not irreducible, by Lemma 2.3, we can always find non-trivial subrep-
resentations w and W ′ such that V = W ⊕W ′. We will now prove the existence
of the decomposition by induction on the dimension of the representation:

Base Case: dim(V ) = 1, then V is irreducible and V = V is the irreducible
decomposition:

Assume dim(V ) = n. Assume that any representation of dimension less than
n has an irreducible decomposition. Then, by the claim, V = W ⊕W ′ where
dim(W ) and dim(W ′) are less than n.

By induction, W and W ′ will decompose into irreducible representations,
which in turn gives the irreducible decomposition of V. Hence, we have proved
the existence of the irreducible decomposition of representations V of finite
group G.

Now, we will prove the uniqueness of this decomposition. Let

V =

r⊕
i=1

λiVi =

s⊕
i=1

µiWi.

be two irreducible representations. We want to show that for all Vi, there exists
Wj such that Vi ∼= Wj . Define:

ρj : Vi → V →Wj .

One checks easily that ρj is a homomorphism of representations. We note here
that Vi and Wj are irreducible. Then, by Schur’s lemma, either ρj = 0 or ρj is
an isomorphism. In the latter case we are done.

We discount the case where all ρj = 0 since then the first part of the map
must also be 0, which is impossible since Vj 6= {0}.

�
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Definition 2.7 Let (V, ρ) be a C−representation of G. The character of (V, ρ)
is a map

χV : G→ C

g 7→ Tr(ρ(g)).

Lemma 2.4 Let V,W be representations of G, then V ⊕W is also a represen-
tation. Then χV⊕W = χV + χW

Proof Let dim(V ) = n and dim(W ) = m, then dim(V ⊕W ) = m+n. Here we
note that V and W have two disjoint sets of basis, meaning that ρv(g) cannot
affect any of the basis of W and vice versa. Then it is obvious that ρV⊕W (g)
consists of a direct sum of matrices ρV (g) and ρW (g), hence proving the lemma.

�

Lemma 2.5 If g, g′ ∈ G are conjugates to each other (i.e. ∃h ∈ G s.t. g′ =
hgh−1), then χV (g) = χV (g′)

Proof

χV (g′) = Tr(ρ(g′)) = Tr(hgh−1) = Tr(ρ(h)ρ(g)ρ(h−1))

= Tr(ρ(h)ρ(h−1)ρ(g)) = Tr(ρ(g)) = χV (g).

�

Definition 2.8 Let V be a representation of G, we define

V G := {v ∈ V : gv = v, ∀g ∈ G}.

We note here that V G is a subrepresentation of V .

Proposition 2.1 Let V and W be G-representations. One can equip Hom(V,W )
with a G-representation structure by defining a map:

g.φ : V →W

g.φ : v 7→ gφ(g−1v).

for g ∈ G and φ ∈ Hom(V,W ).

Lemma 2.6 Hom(V,W )G consists of linear maps that are homomorphisms of
representations: V →W .

Proof Let h, g ∈ G, and map g.ρ : V →W be defined as above. Then:

(hg).ρ = (hg) · ρ((hg)−1) = (hg) · ρ(g−1h−1 = h · ((gρ(g−1)h−1) = h.(g.ρ).

We will now verify that under the above definition for g.ρ, Hom(V,W )G

consists of homomorphisms: V →W :

ρ(gv) = g · ρ(g−1(gv)) = g · ρ(v).

�
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responding character. Then:

1

|G|
∑
g∈G

χV = dim(V G).

Proof

1

|G|
∑
g∈G

χV =
1

|G|
∑
g∈G

Tr(ρ(g)) = Tr

 1

|G|
∑
g∈G

ρ(g)

 .

Let

A =
1

|G|
∑
g∈G

ρ(g).

Let v ∈ V G, then

Av =
1

|G|
∑
g∈G

ρ(g)v =
1

|G|
∑
g∈G

v = v.

Then for all v ∈ V, Av ∈ V G, g ∈ G, we have:

gAv = g · 1

|G|
∑
h∈G

ρ(h)v = · 1

|G|
∑
h∈G

ρ(gh)v =
1

|G|
∑
k∈G

ρ(k)v = Av.

Therefore, A is of the form

(
0 ∗
0 Iddim(V G)

)
, hence TrA = dim(V G).

�

Lemma 2.8 Let V,W be representations of G, then:

χV (g)χW (g) = χHom(V,W )(g).

Proof Let g ∈ G and ρV (g) denote the matrix associated with g acting
on representation V and correspondingly for ρW (g). We note that χW (g) =
Tr(ρW (g)). We also know that for some k, ρW (g)k = Id since G is a finite
group. Hence, we know by the Jordan normal form, that that ρW (g) is conju-
gate to a diagonal matrix diag(λ1, ..., λn) with |λi| = 1. Let dim(V ) = n and
dim(W ) = m. Then the trace of ρW (g) can be written as:

Tr(ρW (g)) =

n∑
i=1

λi, |λi| = 1.

Then since |λi| = 1, Tr(ρW (g)) = Tr((ρW (g))−1) = Tr(ρW (g−1)).
Now, choose bases for W : {e1, ..., em} and for V : {f1, ..., fn} such that

ρW (g)ei = λiei and ρV (g)fj = µjfj . Then we have a basis of Hom(V,W ): {ρij}
defined to be:

ρij(ei) = fj .ρij(ek) = 0 ∀k 6= i.

8
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(ρHom(V,W )(g)ρij)(ek) = ρV (g)ρij(ρW (g−1)(ek))

= ρV (g)(ρij(λ
−1
k (ek))) =

{
λ−1i µjfj if k = i

0 if k 6= i
.

Then, when k = i, we have:

ρHom(V,W )(g)ρij = λ−1i µjfj .

When k 6= i, we simply have 0.
Therefore, ρHom(V,W )(g) is conjugate to a Jordan normal form matrix whose

diagonal consists of λ−1i µj . Then:

χHom(W,V ) = Tr(ρHom(W,V )(g)) =
∑
i,j

λ−1i µj =
∑
i,j

λiµj =

n∑
i=1

λi ·
m∑
j=1

µ = χW (g)χV (g).

�

Definition 2.9 Let V,W be representations of finite group G. Let χV , χW be
their corresponding characters. Define the inner product of χV , χW as:

〈χV , χW 〉 :=
1

|G|
∑
g∈G

χV (g)χW (g)

Theorem 2 (First Orthogonality Relation) Let V,W be irreducible repre-
sentations of G, then:

〈χV , χW 〉 = 1, if V ∼= W,

〈χV , χW 〉 = 0, if V �W.

Proof By definition, we have:

〈χV , χW 〉 =
1

|G|
∑
g∈G

χV (g)χW (g).

By Lemma 2.8, we have:

1

|G|
∑
g∈G

χV (g)χW (g) =
1

|G|
∑
g∈G

χHom(V,W )(g).

By Lemma 2.7, we have:

1

|G|
∑
g∈G

χHom(V,W )G(g) = dim(Hom(V,W )G).

Then, putting it all together and applying Schur’s Lemma, we have:

〈χv, χw〉 = dim(Hom(V,W )G) = 1 if W ∼= V,

〈χv, χw〉 = dim(Hom(V,W )G) = 0 if W � V.

�
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refers to the number of copies of irreducible representation Vi in the irreducible
decomposition of V . Then:

〈χV , χV 〉 =

r∑
i=1

m2
i .

Proof By Lemma 2.5 and the First Orthogonality Relation, we have:

〈χV , χV 〉 =
∑
i,j

〈miχVi ,mjχVj 〉 =

r∑
i=1

m2
i .

�

Corollary 2.3 Let V be a representation of G. Then V is irreducible if and
only if 〈χV , χV 〉 = 1.

Proof

〈χV , χV 〉 =
1

|G|
∑
g∈G

χV (g)χV (g) =
1

|G|
∑
g∈G

χEnd(V )(g) = dim(End(V )G).

By Lemma 2.7, we know that End(V )G consists of the linear map that are
are homomorphisms of representations: V → W . Since V is irreducible, by
Schur’s Lemma, we have End(V )G = CId, and hence, dim(End(V )G) = 1.

Suppose 〈χV , χV 〉 = 1. Then by Corollary 2.2, we have 〈χV , χV 〉 = a21 +
...+ a2r where V = a1V1 + ...+ arVr. However, since 〈χV , χV 〉 = 1, that would
mean that the irreducible decomposition of V can only consist of one irreducible
representation. Hence, V is irreducible. �

2.5 Lie Algebras

Definition 2.10 A Lie Algebra is a vector space L over a k endowed with a
bilinear form [·, ·] : L× L→ L satisfying:

1. For all x, y ∈ L, [x, y] = −[x, y]
2. For all x, y, z ∈ L, [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 (Jacobi Identity)

Example 2.1 Let L = Mn(k) be the vector space of all n × n matrices with
entries in k. Let [A,B] := AB −BA. Then, (L, [·, ·]) is a Lie algebra.

Definition 2.11 Let (L1, [·, ·]1) and (L2, [·, ·]2) be two Lie algebras. A homo-
morphism of Lie algebras is a linear map φ : L1 → L2 satisfying for all x, y ∈ L1

[φ(x), φ(y)]2 = φ([x, y]1).

Definition 2.12 A subalgebra of a Lie algebra (L, [·, ·]) is a subspace L′ such
that for all x, y ∈ L′, [x, y] ∈ L′.

10
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subalgebra.

Proof Let x, y ∈ L1 and φ(x), φ(y) ∈ L2. Then since φ is a homomorphism of
lie algebras: φ([x, y]) = [φ(x), φ(y)] ∈ L2.

�

Definition 2.13 An ideal of a Lie algebra (L, [·, ·]) is a subspace I such that
for all x ∈ L, y ∈ I, [x, y] ∈ I.

Lemma 2.10 The kernel of a homomorphism of Lie algebras φ : L1 → L2 is
an ideal of L1.

Proof Let x ∈ L1, y ∈ ker(φ), and φ(x), φ(y) ∈ L2. Then, φ([x, y]) =
[φ(x), φ(y)] = [φ(x), 0] = 0.

�

Definition 2.14 Let (L, [·, ·]) be a Lie Algebra. A representation of L is the
data of a vector space V and a homomorphism of Lie algebras ρ : L→ End(V ).

Remark 2.3 Similar to finite group theory, we can define subrepresentations,
homomorphisms and isomorphisms between representations, irreducibility, and
even Schur’s lemma for Lie algebras. However, Maschke’s theorem doesn’t exist
in general for Lie algebras.

2.6 Compact Matrix Groups

Example 2.2 SOn(R) and On(R) are compact.

Proof It suffices to prove that On(R) is compact. Let A ∈ On(R). Then
AAᵀ = Id can be represented as:

a11 a12 · a1n
· · ·
ai1 ai2 · ain
· · ·
an1 an2 · ann



a11 · ai1 · an1
a12 · ai2 · an2
· · ·
a1n · ain · ann

 = Idn

Hence ∀i ∈ {1, 2, ..., n}, a2i1 + a2i2... + a2in = 1 and hence the absolute value
of any entry in any A ∈ On(R) is bounded by 1.

�

Example 2.3 SUn(C) and Un(C) are compact.

Proof It suffices to prove that Un(C) is compact. Let A ∈ Un(C). Then

representing AAT = Id can in a similar way to Theorem 5, we have ∀i ∈
{1, 2, ..., n}:

n∑
j=1

aijaij =

n∑
j=1

|aij |2 = 1⇒ |aij | 6 1

�

11
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wardDefinition 2.15 Let G be a group. A measure µ on G is called left invariant

if for all g ∈ G, measurable subsets A ⊂ G, µ(gA) = µ(A).

Remark 2.4 The definition for right invariant measures is similar.

Proposition 2.2 ([5]) Any matrix group admits a left-invariant measure.

Definition 2.16 A Haar measure is a measure of a group G that is both left
and right invariant, with µ(G) = 1.

Theorem 3 ([5]) Let G be a compact matrix group. Then there exists a unique
Haar measure on G.

Remark 2.5 The representation theory of compact groups are quite similar
with that of finite groups. This is reflected in the simple replacement of 1

|G|
∑
g∈G ...

by
∫
A
...dµ, where µ represents the Haar measure of a compact group, in the

proof of Schur’s Lemma, Maschke’s theorem, the First Orthogonality Relation,
and all associated corollaries and lemmas during the proofs of these theorems
which all apply to compact matrix groups.

Definition 2.17 Let G be a matrix group. We define the tangent space of G
at the identity element e as:

TeG := {A ∈Mn(C) : ∃ ε ∈ R, δ : (−ε, ε)→ G, s.t. δ(0) = Id, δ′(0) = A}

Example 2.4 Let G = SU(n), then Te(G) = {A ∈ Mn(C) : A+ Aᵀ = 0, A =
0}

Example 2.5 Let G = SLn(C), then Te(G) = {A ∈Mn(C) : Tr A = 0}.

Proposition 2.3 Let G ⊂ GLn(C) be a matrix group. Knowing that TeG ⊂
Mn() has a Lie algebra structure defined by [A,B] := AB − BA, then TeG ⊂
Mn(C) is a sub Lie algebra.

Proof For X,Y ∈ TeG, we need to show that [X,Y ] = XY − Y X ∈ TeG. Let
X = δ′(0) and Y = µ′(0), where δ and η are paths from (−ε, ε) → G. For a
fixed s ∈ (−ε, ε) consider the path:

Γs : (−ε, ε)→ G

t 7→ δ(t)η(s)δ−1(t)

Then, by the product rule of derivatives, we have:

Γ′(0) = δ′(0)η(s)δ−1(0) + δ(0)η(s)
d

dt

∣∣∣∣
t=0

δ−1(t) = Xη(s)− η(s)
d

dt

∣∣∣∣
t=0

δ−1(t).

The proof is finished by the following lemma:

12
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d

dt

∣∣∣∣
t=0

δ−1(t) = −X.

Proof We note that Id = δ(t)δ−1(t) ∀t ∈ (−ε, ε). Then, differentiating both
both sides with t, we have:

d

dt
Id = δ′(t)δ−1(t) + δ(t)

d

dt

∣∣∣∣
t=0

δ−1(t).

Setting t = 0 and then substituting for desired variables:

0 = δ′(0)δ−1(0)+δ(0)
d

dt

∣∣∣∣
t=0

δ−1(t) = X+
d

dt

∣∣∣∣
t=0

δ−1(t)⇒ d

dt

∣∣∣∣
t=0

δ−1(t) = −X.

�
Hence, for all s ∈ ε, Xη(s)− η(s)X ∈ TeG. Therefore,

d

ds

∣∣∣∣
s=0

Xη(s)− η(s)X = Xη′(0)− η′(0)X = XY − Y X ∈ TeG.

�

Proposition 2.4 Let V be a representation of G which induces the representa-
tion of g as described above. If V is irreducible as a g−representation, then it
is irreducible as a G−representation.

Proof Assume V is not irreducible as a G-representation. Let W ⊂ V be a
non-trivial G-representation, then for all g ∈ G, w ∈W , g.w ∈W .

Claim 2.1 W ⊂ V is also a non-trivial sub-representation of g

We need to show that ∀X ∈ g, w ∈ W , then X.w ∈ W . Let X = δ′(0) with
δ : (−ε, ε)→ G. By (*), ∀t ∈ (−ε, ε), δ(t)w ∈ W . Then, X.w = d

dt

∣∣
t=0

δ(t)w ∈
W . However, this claim contradicts the irreducibility of V as a g-representation
and thus the proposition is proved.

�

3 Larsen’s Alternative

3.1 Fourth Moments

Definition 3.1 Let G ⊂ GLn(C) be a compact matrix group. The fourth
moment of G ⊂ GLn(C) is M4(G,GLn(C)) =

∫
G
|Tr(g)|4dµ(g) where µ is the

Haar measure of G.

Proposition 3.1 We can regard V = Cn as a representation of G. Then
M4(G,GL(V )) = dim[End(End(V ))G].

13
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M4(G,GL(V )) =

∫
G

|χV (g)|4dµ(g) =

∫
G

(
χV (g)χV (g)

)2
dµ(g)

Using we can use Lemma 2.8 and 2.9 to write:∫
G

(
χV (g)χV (g)

)2
dµ(g) =

∫
G

(χEnd(V )(g))2dµ(g) =

∫
G

χEnd(End(V ))(g)dµ(g)

= dim(End(End(V ))G)

�

Remark 3.1 If End(V ) =
⊕r

i=1miVi where all Vi are irreducible and not
isomorphic to one another, then by Corollary 2.2, we have M4(G,GLn(C)) =∑r
i=1m

2
i .

Proposition 3.2 Let H ⊂ G ⊂ GLn(C). Then M4(G,GLn(C)) 6M4(H,GLn(C)).

Proof Let V = Cn be the representation of G and End(VG) =
⊕r

i=1miVi
where Vi are irreducible representations of G. Then, by the remark, M4(G,GLn(C)) =∑r
i=1m

2
i . As H-representations however, each Vi may not be irreducible and

may be further decomposed into Vi =
⊕ti

j=1 nijVij . Then:

End(VH) =

r⊕
i=1

ti⊕
j=1

mi(nijVij)

And therefore:

M4(H,GLn(C)) =

r∑
i=1

ti∑
j=1

(minij)
2 >

r∑
i=1

m2
i = M4(G,GLn(C))

�

3.2 Larsen’s Alternative

The main references for this part is [4, 6]. The formalisation and proof is
following [6].

Theorem 4 (Larsen’s Alternative [6]) Let n > 2. Let G be a compact sub-
goup of SU(n). If the fourth moment of G is equal to 2: then either G = SU(n)
or G is a finite group.

Proof Let V = Cn. As G-representations, End(V ) =
⊕r

i=1miVi. By remark
3.1, M4(G,GLn(C)) =

∑r
i=1m

2
i . Then, since M4(G,GLn(C)) = 2, End(V ) =

V1 ⊕ V2, where V1 � V2 and V1, V2 irreducible (*).
In fact, End(V ) = End0(V )⊕W where End0(V ) := {φ : V → V, Tr φ = 0}

and W := {φ = λIdV : λ ∈ C}. Taking into account (*), we conclude that
End0(V ) and W are irreducible representations.

14
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GLn(C), v ∈ End0(V ) : g.v = gvg−1

Proof Let g, h ∈ G and v ∈ End0(V ). Then:

h.(g.v) = h.(gvg−1) = hgvg−1h−1 = (hg).v

IdG.v = Id.v = v

�

Lemma 3.2 The induced representation of g = sln(C) is defined by for all X ∈
sln(C), v ∈ End0(V ) = sln(C): X.v = [X, v].

Proof Say X = δ′(0), where δ : (−ε, ε) → SLn(C). By lemma 3.1, we have
δ(t).v = δ(t)vδ(t)−1. By the definition of the induced representation:

X.v =
d

dt

∣∣∣∣
t=0

δ(t).v =
d

dt

∣∣∣∣
t=0

δ(t)vδ(t)−1 = Xv − vX = [X, v]

�
We know that:

End0(V ) = sln(C) = su(n)⊗ C

We know that since G ⊂ SU(n) ⊂ SLn(C), TeG ⊂ su(n) ⊂ sln(C), then
TeG⊗R C ⊂ su(n)⊗R C, the latter of which is equal to End0(V ).

Since the action of G on TeG⊗R C is a subrepresentation of the action of G
on su(n)⊗R C = End0(V )

By the irreducibility of End0(V ) as a G-module, either TeG = {0} (1) or
End0(V ) = su(n)⊗R C = TeG⊗R C⇒ TeG = su(n) (2).

(1) If TeG = {0}, then G is discrete. But since G is compact, we conclude
that G must be finite.

(2) If TeG = su(n), then since G ⊂ SU(n), we have G = SU(n).
�

4 Calculation of Fourth Moments

The Larsen’s alternative places the importance of the fourth moments. In this
section, we will calculate the fourth moments of some classical groups. Al-
though the definition of the fourth moments is stated without any representa-
tion theory, its calculation, apart from some easy cases (See Section 4.1 and
4.3), demands representation theory. Our calculation of the fourth moments
using representation theory also applies to the integration over some symmetric
spaces (Corollary 4.1). To explore if our results can be applied in a similar way
to other integration results would be an interesting topic.

15
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Let us first prove a lemma:

Lemma 4.1 There exists a group isomorphism between S1 := {z ∈ Cx : |z| =
1} and SO2(R).

Proof It is easy to check both S1 and SO2(R) are both groups. Now, using
the fact that ∀M ∈ SO2(R), det M = 1 and MᵀM = Id we will attempt to

standardize the form of M . Let M =

(
a b
c d

)
⊂ SO2(R). Then using the two

facts above:

ad− bc = 1, a2 + b2 = 1, c2 + d2 = 1, ac+ bd = 0.

From these 4 equations, one can quickly realize that a = d and b = −c, which

in turn creates the motivation to write M as

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
, for some

θ ∈ [0, 2π).
It is well known that elements in S1 can be written in the form cos(θ) +

i sin(θ). Now, let us construct a map:

ρ : S1 → SO2(R)

cos(θ) + i sin(θ) 7→
(

cos(θ) sin(θ)
− sin(θ cos(θ)

)
Let z1 = cos(θ1) + i sin(θ1) and z2 = cos(θ) + i sin(θ2). Then:

ρ(z1)ρ(z2) =

(
cos(θ1) sin(θ1)
− sin(θ1) cos(θ1)

)(
cos(θ2) sin(θ2)
− sin(θ2) cos(θ2)

)
=

(
cos(θ1 + θ2) sin(θ1 + θ2)
− sin(θ1 + θ2) cos(θ1 + θ2)

)
= ρ(z1z2).

It is easy to check that ρ(1) = Id2 and that this map is not only a homomor-
phism as shown above, but also an isomorphism due to the unique association
of a singular value of θ to one element of S1 and SO2(R) each.

�
Now, we will attempt to construct a Haar measure for G = SO2(R). Let

µ := dθ
2π , it is easy to check that it is a Haar measure for G when each element

of G is associated with a unique value of θ.

µ(gA) =

∫
gA

dθ

2π
=

1

2π
[(g +Af )− (g +Ai)] =

1

2π
(Af −Ai) =

∫
A

dθ

2π
= µ(A)

µ(G) =

∫ 2π

0

dθ

2π
= 1

Then, applying definition 3.1, we have:

16
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∫
G

(Tr ρ(g))4dµ(g)

=

∫ 2π

0

(2 cos θ)4
dθ

2π
=

8

π

∫ 2π

0

(cos θ)4dθ = 6.

We have calculated the fourth moment of SO2(R) ⊂ GL2(C) by its definition
using calculus. This method can be generalised to calculate the fourth moment
of SOn(R) ⊂ GLn(C) for larger n. In Section 4.5 however, we will calculate the
latter using representation theory.

4.2 Fourth moment of S4 acting on R3

There exists an isomorphism between S4 and the group of matrices describing
the map of 4 different points to themselves on 3d space for all sets of these 4
points in which no permutation is congruent to another.

Now, let V be a k−vector space and B,B′ be bases of V. Let Q be the
transition matrix of B → B′. Let φ : V → V be a linear map. Let AB
and AB′be the representation of φ under B and B′. Then, since the trace
of matrices can be regarded as an abelian group: Tr(AB′) = Tr(QABQ

−1) =
Tr(QQ−1AB) = Tr(AB), meaning that the trace of all conjugates are the same.
This serves as the motivation for our lemma:

Lemma 4.2 Let σ, σ′ ∈ Sn where Sn is the group of permutations order n.
Then σ is conjugate to σ′ if and only if they share the same type, defined as the
set of lengths of the disjoint cycles the permutation can be partitioned into.

Proof Let us first examine the truth of this statement if sigma is only a single
cycle. Let η ∈ Sn and (k1, ..., kr) be a cycle in Sn. Let x ∈ {η(k1), ...η(kn)}, say
x = η(ki). Then η(k1, ..., kr)η

−1 can be seen as a map of x.

η(k1, ..., kr)η
−1(x) = η(k1, ..., kr)η

−1(η(ki)) = η(ki+1)

Therefore, as permutations within Sn, η(k1, ..., kr)η
−1 = (η(k1), ...η(kr)), which

preserves the length of the cycle. Now let σ ∈ Sn, σ = µ1, ..µr be the disjoint
product of cycles. Then:

ηση−1 = η(µ1, ..µr)η
−1 =

r∏
i=1

ηµiη
−1

From our earlier result, we know that ηµiη
−1 preserves the length of the cycle

µi and therefore, ηση−1 preserves the type of σ as a whole. This proves both
results in the lemma.

�
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dron and a representative permutation matrix from each type to calculate M4.
The tetrahedron of choice has a face parallel to the xy-place, a rotational axis
to that face coinciding with the z-axis, and an axis of reflection on the xz plane.
Then:

Type of Permutation of permutations a representative Trace

1-cycle 1

1 0 0
0 1 0
0 0 1

 3

2-cycle
(
4
2

)
= 6

−1 0 0
0 1 0
0 0 1

 1

3-cycle 2×
(
4
3

)
= 8

 cos( 2π
3 ) sin( 2π

3 ) 0
− sin( 2π

3 ) cos( 2π
3 ) 0

0 0 1

 0

4-cycle 3! = 6 ? ?

2 2-cycles
(
4
2

)
× 1

2 = 3

−1 0 0
0 −1 0
0 0 1

 -1

All of the above examples are easily verifiable, so no space will be spent here
explaining them. Notably however, there was no quick example for permutations
of cycle length 4. However, we can find out the unknown trace of permutation
matrices of cycle length 4 by referring to the First orthogonality Relation. This
serves as motivation for another lemma:

Lemma 4.3 Let G = S4 where S4 is the group of permutations of order 4 and
V = C3. Then the group action of G on V is irreducible.

Proof We note that ρ : S4 → GL(V ) describes the rotation or reflection of
one particular tetrahedron to itself. Let W be a non-trivial vector space that

currently simply consists of all points on
←−→
WO, where O is the origin and W is a

random point. For simplicity’s sake, let one of the vertexes of this tetrahedron be
on the origin. Then, the application of S4 to the origin vertex of the tetrahedron
would reach the origin and 2 other points, creating 3 non-parallel lines as vector
spaces. Since each point on all 3 lines are a part of vector spaceW , W = C3 = V .
Hence, by contradiction, group action G on V is irreducible.

�

Using the above lemma, we can apply the First Orthogonality Relation to this
problem:

〈χV , χV 〉 =
1

|S4|
∑
g∈S4

(χv(g))2 = dim(End(V )G)

18
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tion, End(V )G = CId and therefore dim(End(V )G) = 1. Since we already
have traces of the representations of all different types of permutations except
4-cycles, let us now let x be the trace of 4-cycles and apply it to the above
equation:

1

24

(
32 +

(
4

2

)
· 12 + 0 + 3! · x2 +

(
4

2

)
· 1

2
· 12
)

= 1

We get x2 = 1. Now, putting everything back into the formula for fourth
moments, we have:

M4(S4, GL3(R)) =
1

24

∑
g∈S4

|χv(g)|4 =
1

24
(81 + 6 + 0 + 6 + 3) = 4

4.3 Fourth moment of Sn acting on Cn

We have a natural action of Sn on Cn defined by: for σ ∈ Sn and x =
(x1, ..., xn) ∈ Cn, σ(x) := (xσ(1), ..., xσ(n)). This action gives an injection of
groups: Sn ↪→ GLn(C). In this section we will calculate the fourth moment of
this inclusion.

Let us first begin with several observations:
1. There exists an isomorphism between the Sn and the group of n × n

permutation matrices.
2. The entries equal to 1 along the diagonal of a permutation matrix repre-

sent those elements which are mapped back to themselves.
Let X be defined as the set of elements upon which Sn acts. Then the trace

of any permutation matrix of degree n is equivalent to |σ| where {σ ∈ Sn, xi ∈
X : σxi = xi}. We note that ∀k ∈ N, k4 represents the total number of ways 4
non-identical objects could be placed into |σ| containers, each container capable
of holding multiple objects. Therefore, for each element g ∈ Sn, the value
Tr(ρ(g))4 is equivalent to the number of ways we can select 4 not necessarily
different elements which are mapped back to themselves in this g. Hence, the
value

∑
g∈Sn Tr(φ(g))4 represents the number of times in all permutations where

every quartet of elements xa, xb, xc, xd (a, b, c, d not necessarily different from
each other) is mapped back to their original positions. Let us now divide this
counting problem into cases:

Case 1 (a 6= b 6= c 6= d):
(
n
4

)
× (n− 4)!× 4! = n!

Case 2 (a = b = c = d):
(
n
1

)
× (n− 1)!× 1! = n!

Case 3 (a = b 6= c = d):
(
n
2

)
× (n− 2)!×

(
4
2

)
= 3n!

Case 4 (a = b = c 6= d):
(
n
2

)
× (n− 2)!×

(
4
3

)
× 2! = 4n!

Case 5 (a = b 6= c 6= d):
(
n
3

)
× (n− 3)!×

(
4
2

)(
3
1

)
· 2 = 6n!

Summing the 5 cases, we find that
∑
g∈Sn Tr(ρ(g))4 = 15n!. Then, we have:

M4(Sn, GLn(C)) =
1

Sn

∑
g∈Sn

Tr(ρ(g))4 =
1

n!
× 15n! = 15
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on R3.

The classification of finite subgroups of SO(3) is a basic and well-known re-
sult [1]. In this part, we will calculate the fourth moments of finite subgroups
of SO(3). To this end, we will recall the classical method used to classify finite
subgroups of SO(3) following Artin’s textbook [1]. The idea is to determine the
action of finite groups on regular polygons. The action gives a representation
of the finite group in question, and by calculating explicitly the character table,
we can calculate the fourth moments. We will exploit the first orthogonality
relation (Section 2.4) to calculate these fourth moments.

Before examining the proposition, we need to define a few terms and prove
several lemmas. Assume G acts on X and x ∈ X, then:

Definition 4.1 The orbit of x is defined as Ox := {gx : g ∈ G}.

Definition 4.2 The stabiliser of x is define as StabG(x) := {g ∈ G : gx = x}.

Lemma 4.4 |G| = |Ox||StabG(x)|.

Proof An intuitive explanation is that for all x ∈ X, all elements g ∈ G can be
divided into two sets based on the effect of their action on x: whether gx results
in a change in the element (gx ∈ Ox), or it does not(g ∈ StabG(x)). Then to
construct any element of G, we need to choose one element from either set (Id
belongs to both sets), proving the lemma.

�

Remark 4.1 For all A ∈ O(3) and x, y ∈ R3, 〈Ax,Ay〉 = 〈x, y〉.

Proof

〈Ax,Ay〉 = (Ax)ᵀ(Ay) = (xᵀAᵀ)(Ay) = xᵀ(AᵀA)y = xᵀy = 〈x, y〉.

�
Let −→x ∈ S2 := {(x, y, z) ∈ R3 : x2 +y2 +z2 = 1}, then by the above remark,

we have |A−→x |2 = 〈Ax,Ax〉 = 〈x, x〉 = |−→x |2 = 1. Hence, for any element
−→x ∈ S2, we have A−→x ∈ S2. This creates the motivation for us to define a
group action of SO(3) ⊂ O(3) on the sphere of radius 1, S2.

Definition 4.3 Let G ⊂ SO(3) be a finite subgroup. The set of poles of G is
defined as the set of fixed points Pg ⊂ S2 such that there exists g ∈ G where
gx = x.

Remark 4.2 Any non-identity element in SO(3) has exactly 2 poles.

Lemma 4.5 G acts on Pg i.e. ∀g, x ∈ PG, gx ∈ PG.
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wardProof Let g ∈ G. Let x ∈ PG, x must be a pole of some element h 6= g¬e ∈ G

i.e hx = x. Then for ghg−1 ∈ G, ghg−1(gx) = g(hx) = gx. Hence gx is a pole
for ghg−1, a non identity element of G. �

Let G ⊂ SO(3) be a finite subgroup, then we know that PG is a finite set.
Now for the group action G on PG, let |G| = N , Let O1, O2, ...Ok be the orbits
of this group action. Let |Oi| = ri, let ni = |StabG(xi)| for xi ∈ Oi.

Lemma 4.6

2(N − 1) =

k∑
i=1

(ni − 1)ri.

Proof Let Q := {(g, x) ∈ G × PG : g 6= e, gx = x}. Then there are two ways
of counting |Q|:

Method 1: For any given g ∈ G, g 6= e there are exactly 2 elements x1, x2 ∈
PG satisfying gx1 = x1 and gx2 = x2. Hence |Q| = 2(N − 1).

Method 2: For any given x ∈ PG, the set g ∈ G s.t. gx = x and g 6= e is
just: StabG(x)− {e}. Hence, to count the total number of pairs of Q, we need
to count the total number of pairs of elements from selected from each orbit and
corresponding stabilizer: |Q| =

∑r
i=1(ni − 1)ri.

�
By the lemma, we have:

2(N − 1) =

k∑
i=1

(ni − 1)ri,

2− 2

N
=

k∑
i=1

1− 1

ni
(∗)

Now, let us apply some casework onto this problem:
Let N = 1, then clearly G = e, a subgroup all to itself. For this case, the

fourth moment is 1× (3)4 = 81.
Let N > 1. Suppose k = 1, then: 2− 2

N = 1− 1
n1
→ 1

n1
= 2

N − 1 > 0 which
is clearly impossible. Then, we realize there must be more than one orbit.

Let N > 1 and k = 2. Rearranging (∗), we have 1
n1

+ 1
n2

= 2
N → n1 =

n2 = N . Then, we know that each orbit contains one element and that the
stabilizer for both orbits is the entire group. This implies that the elements of
G are rotations with respect to axis P1P2, the two elements comprising the two
orbits.

Claim 4.1 Let G ⊂ SO(3) be a finite subgroup containing only rotations with
respect to an axis P1P2, then there exists an element gmin ∈ G such that for all
g ∈ G, g = gkmin for some k ∈ Z∗.

Proof Since G is finite, there exists an element gmin 6= 0 ∈ G whose angle of
rotation θmin is minimal. Then any other angle rotation in G is a positive integer
multiple of θ. If not, say there exists some g ∈ G whose angle of rotation θ is
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of rotation 0 < θ− kθmin < θmin, which contradicts the original choice of gmin.
�

Hence, we have shown all finite cyclic group of elements are subsets Cn ⊂
SO(3). Hence, we will try to calculate the fourth moment of these groups:

let gmin =

 cos( 2π
n ) sin( 2π

n ) 0
− sin( 2π

n ) cos( 2π
n ) 0

0 0 1

 for some n ∈ Z+, then the rest of the

elements of G can be expressed as gkmin =

 cos( 2kπ
n ) sin( 2kπ

n ) 0
− sin( 2kπ

n ) cos( 2kπ
n ) 0

0 0 1

, where

k ∈ {1, 2, ..., n− 1}. Then:

M4(Cn, GL3(R)) =
1

n

n−1∑
i=0

(
2 cos(

2kπ

n
) + 1

)4

=
1

n

n−1∑
i=0

(e
2kiπ
n + e−

2kiπ
n + 1)4

=
1

n

n−1∑
i=0

e
8kiπ
n +e−

8kiπ
n +4(e

6kiπ
n +e−

6kiπ
n )+10(e

4kiπ
n +e−

4kiπ
n )+16(e

2kiπ
n +e−

2kiπ
n )+19.

The above form is written out in the form of a sum of multiples of 4 geometric
series of common ratio e±

2kiπ
n , e±

4kiπ
n , e±

6kiπ
n , and e±

8kiπ
n and 19. We note that

each of the sum of the above series when their common ratio is not 1 is equal
to 0. Hence, we can divide into cases:

Case 1 (n = 2): When n = 2, e±
4kiπ
n = e±

8kiπ
n = 1 and hence, M4(C2, GL3(R)) =

1 + 1 + 10 + 10 + 19 = 41;
Case 2 (n = 3): When n = 3, e±

6kiπ
n = 1 and hence, M4(C3, GL3(R)) =

4 + 4 + 19 = 27;
Case 3 (n = 4): When n = 4, e±

8kiπ
n = 1 and hence, M4(C4, GL3(R)) =

1 + 1 + 19 = 21;
Case 4 (n > 4): When n > 4, all of the common ratios are equal to 0 and

hence, M4(Cn, GL3(R)) = 19.

Returning to the analysis of the subgroups of SO(3), we move on to the case
where there are 3 orbits:

1

n1
+

1

n2
+

1

n3
= 1 +

2

N
.

Case 1: Let n1 = 2, n2 = 2, n3 = k ≥ 2⇒ N = 2k, r3 = 2. Hence, for O3, there
are 2 poles {P, P ′} making up the orbit. Every element g ∈ G either fixes them,
in which case they are rotations of multiples of 2π

n about PP ′, or interchanges

them, in which case they are reflections across some axis perpendicular to PP ′.
Therefore, these subgroups of SO(3) are simply dihedral groups D2k in 3D, the
group of symmetries of a regular k-gon in 3D space. Then, let us construct an
example of D2k. Let G1, rotations of multiples of 2π

N about the z-axis and G2

be the reflection across the x-axis. To construct the elements of D2k, we must
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However, since the reflection across the x axis is

−1 0 0
0 1 0
0 0 1

 and the elements

of g ∈ G can be expressed in the form g =

 cos( 2jπ
N ) sin( 2jπ

N ) 0

− sin( 2jπ
N ) cos( 2jπ

N ) 0
0 0 1

 for all

j ∈ {0, 1, ..., n− 1}, the application of the reflection to g would result in a trace
of 1 for all g. Then the fourth moment of D2k can be calculated as:

M4(D2k, GLn(R)) =
1

2k

k∑
j=1

(
2 cos(

2jπ

N
) + 1

)4

+ 14.

Referring to the work on cyclic groups above, we have:
Subcase 1 (k = 2): M4(D2k, GLn(R)) = 21;
Subcase 2 (k = 3): M4(D2k, GLn(R)) = 14;
Subcase 3 (k = 4): M4(D2k, GLn(R)) = 11;
Subcase 4 (k > 4): M4(D2k, GLn(R)) = 10.

Case 2: Let n1 = 2, n2 = 3, n3 = 3 ⇒ N = 12. The poles of orbit O2 and O3

are the vertices of a regular tetrahedron, meaning that this G ⊂ SO(3) is the
subgroup fixing these vertices. Hence, the subgroup displayed here is simply the
A4 (the group of permutations of order 4 which have sign 1). Referring to our
previous work in subsection 4.2, we have:

M4(A4, SO(3)) =
1

12
(1× 81 + 3× 1) = 7.

Case 3: Let n1 = 2, n2 = 3, n3 = 4 ⇒ N = 24. The poles of orbit O1, O2, O3

are the sides, vertices, and faces of a cube. Examining O2, we ascertain that
this G ⊂ SO(3) is the subgroup fixing the vertices of this cube. However, since
reflection and rotation do not count, we treat opposite vertices of the cube as
the same object. This motivates us to create a group action S4 on the 4 pairs of
vertices. Noting lemma 4.2, we create a representative chart to determine the
trace of the various matrices:

Type of Permutation of permutations a representative Trace

1-cycle 1

1 0 0
0 1 0
0 0 1

 3

2-cycle
(
4
2

)
= 6 ? x

3-cycle 2×
(
4
3

)
= 8

 cos( 2π
3 ) sin( 2π

3 ) 0
− sin( 2π

3 ) cos( 2π
3 ) 0

0 0 1

 0

4-cycle 3! = 6

 0 1 0
−1 0 0
0 0 1

 1

2 2-cycles
(
4
2

)
× 1

2 = 3 ? y
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irreducible and hence, we can apply the first orthogonality theorem to solve for
the value of x and y. Let V be the above representation and W be the trivial
representation, then:

〈χV , χW 〉 =
1

24
(1× 3 + 6x+ 3y + 6× 1) = 0⇒ 2x+ y = −3,

〈χV , χV 〉 =
1

24
(1× 32 + 6x2 + 3y2 + 6× 12) = 1⇒ 2x2 + y2 = 3.

Solving these two equations, we have x, y = −1. Therefore:

M4(S4, SO(3)) =
1

24
(1× 34 + 6× (−1)4 + 6× (1)4 + 3× (−1)4) = 4.

Case 4: Let n1 = 2, n2 = 3, n3 = 5 ⇒ N = 60. The poles of O2 are the
vertices of a regular dodecahedron. We ascertain that this G ⊂ SO(3) is the
subgroup fixing the vertices of this dodecahedron. However, since rotation and
reflection do not count, we can assign 5 different elements to the vertices of each
pentagonal face, and treat those 5 sets as the same object. This motivates us to
assign a representation of A5 to the set of vertices. Using a very similar approach
to the one outlined in Case 3 and subsection 4.2, we create a representative chart
to determine the trace of the various:

Type of Permutation # of permutations Representative Trace

1-cycle 1

1 0 0
0 1 0
0 0 1

 3

3-cycle 2×
(
5
3

)
= 20

 cos( 2π
3 ) sin( 2π

3 ) 0
− sin( 2π

3 ) cos( 2π
3 ) 0

0 0 1

 0

2 2-cycles 1
2 ×

(
5
2

)
×
(
3
2

)
= 15 ? x

5-cycle (1,2,3,4,5) 4!
2

 cos( 2π
5 ) sin( 2π

5 ) 0
− sin( 2π

5 ) cos( 2π
5 ) 0

0 0 1

 1+
√
5

2

5-cycles (1,3,5,2,4) 4!
2

 cos( 4π
5 ) sin( 4π

5 ) 0
− sin( 4π

5 ) cos( 4π
5 ) 0

0 0 1

 1−
√
5

2

Then, using a similar proof as used in lemma 4.3, we can ascertain that this
representation is irreducible and hence, we can apply the first orthogonality
theorem to solve for the value of x. We get x = −1 and hence:

M4(A5, GL3(R)) =
1

60

34 + 15 + 12

(
1 +
√

5

2

)4

+ 12

(
1−
√

5

2

)4
 = 3.
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ward4.5 Fourth moment of SO(n) ⊂ O(n) ⊂ GLn(C)

Proposition 4.1 M4(O(n), GLn(R)) = 3.

Proof By representation theory, let V = Cn and SO(n) and O(n) act on V.
Then, by Proposition 3.1, we have:

M4(O(n), GLn(C)) = dim(End(End(V )))O(n)

M4(SO(n), GLn(C)) = dim(End(End(V )))SO(n)

This motivates us to create irreducible representations of End(V ) as O(n) rep-
resentations. Let: End0(V ) := {A ∈ Mn(C) : Tr(A) = 0} Sym0(V ) := {A ∈
Mn(C) : A = Aᵀ}. Anti(V ) := {A ∈ Mn(C) : A = −Aᵀ}.We note that
Te(O(n))⊗R C = Anti(V ). We can prove this using a very similar proof to the
first part of Example 2.7.

We now have irreducible representations of End(V ) as O(n) representations:

End(V ) = CId⊕ End0(V )

= CId⊕ Sym0(V )⊕Anti(V )

= CId⊕ Sym0(V )⊕ Lie(O(n)C).

(4)

Lemma 4.7 CId, Sym0(V ), and Lie(O(n)C are distinct, irreducible represen-
tations of O(n).

Proof
The proof of CId being irreducible is trivial.
We refer to the Exercise V.2 of [5] for the proof of Sym0(V ) being irreducible.
We refer to [2] for the proof of Lie(O(n)C being irreducible

�
Then, by Remark 3.1, we have M4(O(n), GLn(C)) = 12 + 12 + 12 = 3.
We note that this result coincides with the results calculated in [7].

�

Theorem 5 Let n ≥ 2 be an positive integer:

M4(SO(n,C), GLn(C) =


6, if n = 2

4, if n = 4

3, if n 6= 2, 4

Proof
When n = 2, by [5] we have Sym0(V ) = W1 ⊕W2 where W1 and W2 are two
distinct 1D representations distinct from CId and Lie(O(n)) = CId. There-
fore, for n = 2, End(V ) = 2CId ⊕W1 ⊕W2. Then, by Remark 3.1, we have
M4(SO(n), GLn(C)) = 22+12+12 = 6. Note that this coincides with our direct
calculation in Section 4.1.

When n = 4, by [2], we have Lie(O(n)) = V1 ⊕ V2, 2 distinct 3D irreducible
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V1 ⊕ V2 ⇒M4(SO(n), GLn(C)) = 12 + 12 + 12 + 12 = 4.

When n 6= 2, 4, CId, Sym0(V ), Lie(O(n)C are all distinct irreducible SO(n)-
representations. Therefore: End(V ) = CId ⊕ Sym0(V ) ⊕ Lie(O(n)C ⇒
M4(SO(n), GLn(C)) = 12 + 12 + 12 = 3

�

Corollary 4.1 Let O−(n) be defined as the set of n × n orthogonal matrices
whose determinant is −1. Let µ1 be the Haar measure on O−(n) induced from
the Haar measure of O(n). Then:

∫
O(n)−

|Trg|4dµ1(g) =


0, if n = 2

1, if n = 4

3/2, if n 6= 2, 4

. (5)

Proof
Let µ2 be the Haar measure of SO(n) acting on Rn. By Proposition 4.1, we
have:

3 = M4(O(n), GLn(C)) =

∫
O(n)

|Tr(g)|4dµ1(g)

=

∫
SO(n)

|Tr(g)|4dµ1(g) +

∫
O(n)

|Tr(g)|4dµ1(g)

=
1

2

∫
SO(n)

|Tr(g)|4dµ2(g) +

∫
O(n)

|Tr(g)|4dµ1(g)

(6)

Then, by applying Theorem 5 to the above result, we prove the corollary.
�
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