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On Higher Dimensional Orchard Visibility Problem

Shengning Zhang

Abstract. In this article, we study Pólya’s orchard visibility prob-
lem in arbitrary dimension d: suppose at every integral point in Rd,
centered a small d-dimensional ball with radius r (which is considered
as a tree at the integral point), given a d-dimensional ball centered
at the origin O with radius R (which is considered as the orchard),
it asks for the smallest r such that every ray starting from O will hit
some tree in the orchard. We give both upper and lower bounds of
the minimal value of r, say ρ in terms of R, moreover, we prove that

as R→∞, ρ = O(R−
1

d−1 ).

1. Introduction

Let Λ be the set of lattice points Zd\O in Rd, where O is the origin. Let
B(O,R) be the closed ball in Rd centered at O with radius R > 1. Centering
at every integral point P ∈ B(O,R), is a small closed ball B(P, r) with given
small radius r > 0. The original Pólya’s orchard visibility problem considers
the case d = 2, when the disc B(O,R) is thought as a round orchard and every
B(P, r) a tree at P , it asks for the smallest r, which we denote by ρ, so that
one standing at the center O cannot see through the orchard, that is, for any
ray l starting from O, l ∩B(P, r) 6= ∅ for some P .

In [1], it proved that

(1.1)
1√

R2 + 1
< ρ <

1

R
.

Indeed, in an earlier paper [2], Thomas Tracy Allen had proved that

(1.2) ρ =
1

R
.

In this paper, we’d like to study the general Pólya’s orchard problem in arbi-
trary dimension d and prove similar bounds as in (1.1). Our strategy follows
[3], where, however, only deals with the 2 and 3 dimensional cases.
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2. Lower bounds

Consider in Rd the d-dimensional cuboid C with diagonal vertices O and D :=
(1, 1, · · · , 1, [R] + 1), where [R] is the floor function of R. Then

C ∩ Zd = {(x1, · · · , xd) ∈ Zd | xi ∈ [0, 1],∀i = 1, · · · , d− 1;xd ∈ [0, [R] + 1]}.
Apparently, D is not in B(O,R). The segment OD is of the length√

(d− 1) +R2, and any P ∈ C ∩ Zd has the distance squared dist(P,OD)2

to OD

(2.1)
(d− 1 + ([R] + 1)2)(x2

1 + · · ·+ x2
d)− (x1 + · · ·+ xd−1 + ([R] + 1)xd)

2

d− 1 + ([R] + 1)2

This lead us to our first result, which is a direct generalization to the first
inequality of (1.1).

Proposition 1. notations as above

(2.2)

√
d− 1√

d− 1 + ([R] + 1)2
< ρ.

Proof: Consider the formula (2.1), apparently that among all integral
points in C other than O and D, P0 = {0, · · · , 0, 1} minimize the expression,
when

dist(P0, OD)2 =
d− 1

d− 1 + ([R] + 1)2
.

(see the figure below)

Figure 1

So if the tree radius r can block the orchard, it must bigger than
√
d−1√

d−1+([R]+1)2
.

This completes the proof. �

The proposition tells us that ρ grows faster than the rate of R−1 as R goes to
infinity, however, it is not the exact rate of growth of ρ, so we want a better
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lower bound of ρ in terms of R. Indeed, the proof of the proposition tells
us that, to obtain such a lower bound, we have to consider a “finer” solid
containing the ray than the coboid C above. To use such a solid in higher
dimension, we have to use the volume formula of a lattice polyhedron in higher
dimension developed by Macdonald in [4], which is the generalization of Pick’s
Theorem used in [3, Theorem 2.2]. Now we summarize below.

Let Zd ⊂ Rd be the standard integral lattice, X a d-dimensional polyhedra in
Rd whose vertices are all in Zd. Let ∂X be the boundary of X, which can be
viewed as a d− 1- simplicial complex. For any integer n > 0, write

L(n,X) = |X ∩ 1

n
Zd|,

and

M(n,X) = L(n,X)− 1

2
L(n, ∂X),

then, we have the volume of X can be computed by:

Proposition 2 (Macdonald’s Theorem). The volume of the polyhedra V ol(X)
equals

2
(d−1)d! {M(d− 1, X)−

(
d− 1

1

)
M(d− 2, X) +

(
d− 1

2

)
M(d− 3, X)

− · · ·+ (−1)d−1M(0, X)},
where M(0, X) = 1 if d is even, M(0, X) = 0 if d is odd.

Now we give us first theorem

Theorem 1. There is a constant c > 0 such that

(2.3) ([R] + 1)ρd−1 > c.

Remark 1. The constant c is given by the volume of a polyhedra, which can be
computed using Macdonald’s Theorem above. The key is to construct a proper
polyhedra, which will be clear in the proof of the theorem.

Lemma 1. Point Q ∈ Zd∩B(O,R), if for any P ∈ Zd∩B(O,R), OB∩B(P, r) =
∅, then the coordinates of Q are coprime, that is, if Q = (a1, · · · , ad) then
gcd(a1, · · · , ad) = 1.

The lemma comes from an easy observation. Suppose gcd(a1, · · · , ad) = d >
1, then P1 = 1

d (a1, · · · , ad) ∈ Zd∩B(O,R) and obviouslyOB∩B(P1, r) 6= ∅. �

Lemma 2. Let l be any ray starting from O, if point P ∈ Zd ∩B(O,R), P /∈ l
such that dist(P, l) is minimal, then the coordinates of P are coprime.
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Suppose the coordinates of P are coprime with greatest common divisor
d > 1, then dist( 1

dP, l) < dist(P, l). Contradiction. �

To carry out our argument in high dimension, we have to generalize the result
to Lemma 2 from a ray l to a family of geometric objects which we called
diamonds with a diagonal, and is defined as follow:

Definition 1. In Rd, for any positive integer n ≤ d, a n-dimensional diamond
D with a diagonal I is defined as follow:

(i) A 1-dimensional diamond D is nothing but a segment start from the
origin O to a point P 6= O in Rd and its diagonal I is itself;

(ii) Suppose for any i ≤ n, the i-dimensional diamonds with a diagonal
are well-defined, then a n-dimensional diamond Dn with a diagonal In
is defined base on some n-dimensional diamond Dn−1 with a diagonal
In−1: let Vn−1 be the n−1 vector space generated by vectors in Dn−1,
and Pn a point in Rd\Vn−1, consider OIn−1 and OPn as two vectors,
then define Qn be the end point of the vector OIn−1 − OPn, and Dn

is defined to be the convex hull of Dn−1 ∪ {Pn, Qn}, its diagonal is
In := In−1.

Figure 2. an example of 1,2 and 3-diamonds

Lemma 3. Let D be a n-dimensional diamond with a diagonal I in Rd, n < d,
V be n-dimensional subspace in Rd generated by D. Now if a point P ∈ Zd ∩
B(O,R), P /∈ V such that dist(P,D) is minimal, then the coordinates of P are
coprime.

Suppose A ∈ D is the point such that dist(P,D) = dist(P,A) = a. Consider
the triangle ∆OAP , since D is a convex hull by the definition, the segment
OA ⊂ D. Now if the greatest common divisor of the coordinates of P is m > 1,
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consider the point Q = 1
mP ∈ OP . Find a point Q′ ∈ OA ⊂ D such that

QQ′ ‖ AP , then apparently that dist(Q,D) < dist(P,D). Contradiction! �

Proof of the theorem: Consider the point D1 := D given above, we

view the segment OD as a vector from the origin O to D and denote it by ~l.
Among all integral points in B(O,R), find P2 in the first quadrant (that is,
all the points are of nonnegative coordinates) be the one of minimal distance

to ~l. Write the minimal distance ε1. From the lemmas above, we know the
coordinates of P2 are coprime. View the segment OP2 as a vector and denote

it by ~v1, and define vector ~u1 := ~l−~v1, define the two dimensional diamond D2

be the parallelogram spanned by ~v1 and ~u1. From the two lemmas above, D2

does not contain any integral points of Λ other than the 4 vertices. Denote the
2-dimensional plane spanned by ~v1 and ~u1 by V2. Using our notion of diamond,
D2 is a 2-dimensional diamond with a diagonal l.

Now among all integral points in B(O,R)\V2, find one P3 in the first quad-
rant of the minimal distance to V2 ∩ B(O,R). Write the minimal distance ε2.

Consider the 2-dimensional diamond D2 with diagonal ~l and the point P3, by
Definition 1, they together define a 3-dimensional diamond D3 with diagonal
~l. By Lemma 3, all the coordinates of P3 are coprime, D3 contains no inte-
gral points other than the 6 vertices. Denote the 3-dimensional vector space
generated by vectors in D3 by V3.

Keep this process, for all integer i = 1, 2, · · · , d, we obtain i-dimensional dia-

mond Di with diagonal ~l, Vi = spanDi, integral points Pi in the first quadrant
such that

(a) dist(Pi, Vi−1 ∩ Vi−1) = εi−1 is minimal among all integral points in
B(O,R)\Vi−1;

(b) Di is the diamond constructed by Di−1 and Pi;
(c) Di contains no integral points other than its vertices.

It is easy to see, from our construction, the volume of Di is

(2.4) V ol(Di) =
2i−1

i!
ε1 · · · εi−1([R] + 1).

In particular, Write D := D − d, its volume is

(2.5) V ol(D) =
2d−1

d!
ε1 · · · εd−1([R] + 1),

which can also be calculated by Macdonald’s formula as in Proposition 2. On
the other hand, By our construction of D, if the tree radius r is such that every
ray starting from O and passing through one point in D will be blocked by
some tree, then r > εi for any i. So we have

(2.6)
2d−1

d!
rd−1([R] + 1) > V ol(D).



20
21

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward6

Writing

(2.7) c =
d!V ol(D)

2d−1
,

we complete the proof. �

Remark 2. If d = 2, V ol(D) = V ol(D2) = 1, then the Theorem tells that
([R] + 1)ρ > 1, which reproduces the result in [3, Proposition 2.4]. If d = 3,

V ol(D) = V ol(D3) = 2
3

√
2

2

√
2

2 = 1
3 , then the theorem tells that

(2.8) ([R] + 1)ρ2 >
1

2
,

which is better than the result in [3, Proposition 4.4].

3. Upper bounds

In this section we give an upper bound of ρ in terms of R. The key ingredient
is again Minkowsk’s theorem as [3, Theorem 4.1], which we summarize below.

Proposition 3 (Minkowski’s Theorem). Let m be a positive integer and F ⊂
Rd a domain satisfying

(a) F is symmetric with respect to O;
(b) F is convex;
(c) V ol(F ) ≥ m2d.

Then F contains at least m pairs of points ±Ai ∈ Zd\O, 1 ≤ i ≤ m, which are
distinct from each other.

Now we state an upper bound of ρ. The idea is essentially same to [3, §4],
where, however, only deals with the 3-dimensional case.

Theorem 2. There is a constant C > 0, such that

(3.1) Rρd−1 < C.

Proof: For any diameter AA′ of the ball B(O,R), let’s consider the d− 1-
dimensional hyperellipsoid E ⊂ Rd as follow:

(i) AA′ is a long axis of E;
(ii) all other semi-axes of E are equal of length h.

Indeed, consider the function of d variables:

F (x1, · · · , xd) :=
x2

1

h2
+ · · ·+

x2
d−1

h2
+
x2
d

R2
,

then F (x1, · · · , xd) = 1 gives the hyperellipsoid when AA′ is lying in the xd-
axis. Generally, if the line AA′ has a unit directional vector ~ud, extend it to
a orthnormal basis β := {~u1, · · · , ~ud−1, ~ud} of Rd. Then there exists a unitary
transformation T : Rd → Rd which sends β to the standard orthnormal basis
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{(1, 0, · · · , 0), · · · , (0, · · · , 0, 1)} such that T (~ud) = (0, · · · , 0, 1). Then the d−1-
dimensional hyperellipsoid E has equation F (T (x1, · · · , xd)) = 1. See Figure
3.

Figure 3

Now let F ⊂ Rd be the domain enclosed by E (including the points of E).
Apparently, F satisfies the condition (a) and (b) of Minkowski’s Theorem.
Moreover, it is known that the volume of the hyperellipsoid is

(3.2)
π

d
2

Γ(d2 + 1)
hd−1R,

here Γ is the gamma function, so

(3.3) Γ(
d

2
+ 1) =

d

2
Γ(
d

2
) =

d

2
(
d

2
− 1) · · · γ0,

where γ0 = 1 if d is even, γ0 = π
2 if d is odd. By Minkowski’s Theorem, if we

choose h such that

(3.4)
π

d
2

Γ(d2 + 1)
hd−1R = 2d,

then F contains an integral point other than O. This implies that, if we set

C =
2dΓ( d

2 +1)

π
d
2

, and the tree radius r = CR
1

d−1 , then any ray segment OA

starting from O will be blocked by some tree at the integral point contained in
F we constructed as above. Since ρ < r, that we complete the proof. �

Combining Theorem 1 and Theorem 2, we obtain the main result of this article:

Theorem 3. For d-dimensional orchard visibility problem, as the radius of
orchard R goes to infinity,

(3.5) ρ = O(R−
1

d−1 ).
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4. Some Further Thoughts

We can still ask a lot of questions concerning the orchard visibility problem
in arbitrary dimension. For example, for d = 2, it has been proved in [2] that
ρ = 1

R , or

(4.1) lim
R→∞

ρR = 1.

Inspired by our results, it is natural to ask if we can find a constant l for
dimension d such that

(4.2) lim
R→∞

ρd−1R = l.

However, our estimation in this article using polyhedra is apparently not precise
and fine enough for such a conclusion. We will explore this problem in the
future.
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