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Padé approximations in Diophantine Approximations
and Irrationality Problems about Confluent

Hypergeometric Functions

Zhou Kangyun

Abstract

Padé approximations are approximations of holomorphic functions by rational func-
tions. The application of Padé approximations to Diophantine approximations has a
long history dating back to Hermite. In this paper, we use Maier-Chudnovsky construc-
tion of Padé-type approximation to study irrationality properties of functions with the
form

f(x) =

∞∑
k=0

xk

k!(bk + s)(bk + s+ 1)...(bk + t)
,

where b, t, s are positive integers and g.c.d(b, t) = 1 and obtain upper bounds for irra-
tionality measures of their values at non-zero rational points.

Keywords: Padé approximation, Diophantine approximation, irrationality, confluent hy-
pergeometric function
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1 Introduction
Ever since Hippasus of Metapontum made the astonishing discovery of the existence of
irrational number, the irrationality or transcendence of special values has been attracted
much attention. From the simplistic proof for the irrationality of

√
2 and e, mathematicians

have developed a variety of different measures to prove the irrationality of special values, as
well as estimation its irrationality in terms of irrationality measure.

The French mathematician, Charles Hermite, first came up with the idea of using rational
function to approximate and prove the irrationality or transcendence of values of exponential
function at rational points. This method of approximation by rational functions is called
Padé approximation. This method motivated many mathematicians to study Diophantine
approximations, for example, Maier [4], Siegel [6], Chudnovsky [2], etc.

One of the most memorable and significant, yet surprising finding in irrationality of values
would be Apéry’s proof of ζ(3)’s irrationality in 1978. In the original sketch of proof published
by Apéry involves two novel series An and Bn named Apéry numbers and use of their
quotients to approach the value of ζ(3) (See [7]), which had once been considered miraculous
and unexpected.

However, such series An and Bn for many other Diophantine approximation problems nat-
urally appear in Padé approximation or Padé type approximation, especially in the study
of generalised hypergeometric functions. A number of significant works have been done by
Maier [4], followed by Chudnovsky [2], who have sketched a general form of Padé approxi-
mants to generalised hypergeometric functions.

In this paper, we will follow the idea of using Padé or partial Padé approximants to study
the irrationality of values of special functions. We will first recover the result of irrational-
ity proof of the exponential values at rational points, and then study on the irrationality
property of cumulative distribution function (CDF) of normal distribution. Finally, we will
study the irrationality property of some special types of generalised hypergeometric func-
tions, construct the Maier-Chudnovsky type approximations and derive upper bounds for
the irrationality measures. These functions include exponential functions, CDF of normal
distribution and confluent functions with some integral or rational parameters.

In section 2, we review some basic background including Taylor expansion, Padé approxima-
tion and irrationality measure. In section 3, we recall the Padé approximation of exponential
function from the differential-operator point of view by Siegel, and also from a more com-
binatorial lemma used by Maier and Chudnovsky. This also leads to precise estimations of
denominators and remainders. In section 4, we construct explicit Padé-type approximants
to CDF of normal distribution and prove irrationality via a mod p argument similar as
Maier [4]. In section 5, we study the irrationality property of a special form of confluent
hypergeometric functions.

1
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2 Background

2.1 Taylor expansion and irrationality of e

Taylor series is one of the earliest rational approximation to functions. Taking the first
k terms of the Taylor series, Taylor polynomials is widely used to approximate functions
that are infinitely differentiable at some points, especially holomorphic functions. Using
Taylor expansion and Taylor polynomial,a proof of irrationality of e is easily obtained. ( See
[6])

e =
∞∑
k=0

1

k!
.

fn =
n∑
k=0

1

k!
; Rn =

∞∑
k=n+1

1

k!
.

Notice that
Rn =

1

(n+ 1)!
(1 +

1

n+ 2
+

1

(n+ 2)(n+ 3)
...) <

e− 1

(n+ 1)!

Therefore
0 < n!Rn <

2

n+ 1
< 1

Which implies that n!e is never an integer, i.e. e is irrational.

Taylor expansion, however, fails to prove the irrationality of ex when x is a positive integer
greater than 1, since the remainder terms do not approach 0 after multiplying n! in this case.
A more accurate rational approximation method is required to produce smaller remainder
terms.

2.2 Padé Approximation

Padé approximation is introduced to provide a better approximation with larger domain of
convergence.

Padé Approximation is usually defined by:

f[n,m](x) =
Bm(x)

An(x)
, x→ a

where Bm(x) is polynomial of degreem and An(x) is monic polynomial of degree n, and

f(a) = f[n,m](x)

f ′(a) = f ′[n,m](x)

f ′′(a) = f ′′[n,m](x)

2
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...

f (m+n)(a) = f
(m+n)
[n,m] (x)

or alternatively, Padé approximants of f could be defined as:

f(x)− Bm(x)

An(x)
= O((x− a)n+m), x→ a

or:
An(x)f(x)−Bm(x) = O((x− a)n+m), x→ a

if we linearise this condition.

2.3 Irrationality proof by Padé approximants

Using Padé approximation, the proof of irrationality to specific values of a function can be
directly derived by a non-vanishing remainder term R(x) that approaches 0 fast enough as
m,n approaches infinity. This will directly lead to the condition:
For α = f(x) with x fixed, there exists infinitely many pairs of integers (pn, qn) such
that

0 < |qnα− pn| → 0.

Based on the previous idea, Maier has investigated on the irrationality of some special gener-
alised hypergeometric functions using partial Padé approximation, which scarifies accuracy
of the approximation order but still gives an irrationality proof.

Inspired by Maier’s work, Siegel has studied a more general class of functions: Type-E func-
tions. He has proven the irrationality of Type-E functions which satisfies “normal condition”,
which has been removed by Shidlovsky in his later works. This results has been generally
cited as “Siegel-Shidlovsky Theorem”, which was later refined by F.Beukers (See [1]). This
theorem requires the verification of Q(x)-linear independence of some Type-E functions as
solutions to some ODE together with their derivatives, which involves differential Galois
theory.

Even though this general theorem already gives irrationality results if we know Q(x)-linear
independence results of these functions, explicit Padé-type approximation can give more
information, for example, bounds for irrationality measures.

2.4 Irrationality measure

First we recall the definition of irrationality measure (or irrationality exponent).

Definition 2.1. Let α be a real number. The irrationality measure µ(α) is the largest possible
value for µ such that

0 < |x− p

q
| < 1

qµ

is satisfied by an infinite number of integer pairs (p, q) with q > 0.

3
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Beside the effort on proving the irrationality of unknown function, irrationality measure
(or irrationality exponent, in some literature) of known irrational function values has also
attracted much attention. Many has joined the competition to get better bounds or accurate
values for irrationality measures of important numbers. One of the most famous example
would be the result about bounds of irrationality measure of π given by Salikhov, who
reduced the upper bound to 7.606308. . . (See [5]).

In this paper, we will study a type of functions with similar form as confluent hypergeomet-
ric functions with rational parameters and generalise Maier’s results following his methods,
including some interesting examples such as cumulative distribution function of normal dis-
tribution. By explicit construction of Padé or partial Padé approximants to the functions,
we will also derive an upper bound for the irrationality measures of the rational values of
these functions.

3 Irrationality of ex

Irrationality proof to the exponential function is well-studied in the history. The [n,n] Padé
approximation result has been formally given by Siegel, who used differential operator D
(differentiation with respect to x) to express A(x) and B(x).

3.1 Siegel’s method of differential operators

One of the most classic work of proving the irrationality of special values of a function is the
proof of the irrationality of ex. We will go first recall Siegel’s method. (See [6])

Constructing a [n, n] Padé approximation to the function ex, Siegel solved the equation by
using the differential operator D = d

dx
for multiple times.

A(x)ex −B(x) = R(x)

A(x) = (D + 1)−n−1xn;

B(x) = (D − 1)−n−1xn;

Here (D + 1)−n−1 is understood as Taylor expansion of D at 0. It operates on polynomials
and the summation only has finitely many non-zero terms. So is (D − 1)−n−1. And this
implies that both A(x) and B(x) have integer coefficients. And an integral representation of
the remainder terms is given by:

R(x) =
x2n+1

n!

∫ 1

0

tn(1− t)netxdt.

This representation of R(x) implies that:

0 < |R(x)| ≤ |x|
2n+1e|x|

n!
.

The irrationality of ex for all rational x 6= 0 is proven.

4
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3.2 [n,m] Padé approximants of ex

In this section, we will derive the [n,m] padé approximants for ex using a different approach.
For the very general form of Padé approximation:

A(x)f(x)−B(x) = R(x)

where A(x), B(x) are polynomials with degree of n,m; R(x) ∼ O(xm+n+1) (i.e. the term of
lowest order of x in R(x) is order m+ n+ 1).

f(x) = ex =
∞∑
k=0

1

k!
xk

We aim to construct A(x) =
∑∞

i=0 aix
i with the property that A(x)f(x) =

∑∞
k=0Ekx

k,
Ek = 0 for m + 1 ≤ k ≤ m + n. We shall now introduce an important lemma that we
will be using frequently in the rest parts of the paper to construct an explicit form of Padé
approximants A(x), B(x).

Lemma 3.1. For integer k < n,

n∑
i=0

(
n

i

)
(−1)iik = 0

Proof. Take the differential operator δ = x σ
σx
. Notice that

(δ)kxi = (i)kxi.

∞∑
i=0

(
n

i

)
(−1)iik =

∞∑
i=0

(
n

i

)
(−1)i(δ)kxi

∣∣
x=1

= (δ)k(1− x)n
∣∣
x=1

= 0

By addition of terms, this lemma directly leads to:

∞∑
i=0

(
n

i

)
(−1)iS(i) = 0, ord(S) < n

The lemma has been used by Maier and later Chudnovsky to construct explicit forms of
Padé approximants.

This lemma inspires us to construct A(x) in such a way that its numerator will cancel with
the denominator of f(x).

5
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We can construct an explicit form of A(x):

A(x) =
n∑
i=0

(−1)i
(
n

i

)
(m+ 1)ix

n−i

Which satisfies the conditions above.

A(x)f(x) =
∞∑
k=0

n∑
i=0

(−1)i
(
n

i

)
1

m!

(m+ i)!

k!
xk+n−i =

∞∑
k=0

n∑
i=0

(−1)i
(
n

i

)
1

m!

(m+ i)!

(k − n+ i)!
xk

B(x) +
m+n−1∑
k=n

n∑
i=0

(−1)i
(
n

i

)
1

m!

(m+ i)!

(k − n+ i)!
xk +R(x)

(m+ i)!

(k − n+ i)!
= (i+m)(i+m− 1)...(i+ k − n+ 1)

We need it to be a polynomial of degree ord < n with respect to i. Hence, we will need
0 ≤ m− (k − n+ 1) + 1 < n, which leads to m ≤ k ≤ m+ n− 1.

n+m−1∑
k=m

(−1)i
(
n

i

)
1

m!

(m+ i)!

(k − n+ i)!
xk = 0

This will give us the explicit form of R(x) and Bm(x):

R(x) =
∞∑

k=m+n

n∑
i=0

(−1)i
(
n

i

)
1

m!(m+ i+ 1)...(k − n+ i+ 1)
xk

B(x) =
m−1∑
k=0

n∑
i=0

(−1)i
(
n

i

)
(m+ 1)i

(k − n+ i)!
xk

By the shift of k → m+ n+ k, we may rewrite R(x) in a better form:

R(x) =
xm+n

m!

∞∑
k=0

n∑
i=0

(−1)i
(
n

i

)
xk

(m+ i+ 1)k
=
xm+n

m!

∞∑
k=1

n∑
i=0

(−1)i
(
n

i

)
1F1

[
1

m+ i+ 1
;x

]

We can derive an integral representation for the hypergeometric function by solving related
ODE, which will help us to estimate the growth rate of the remainder term R(x) with respect
to m,n and obtain an irrationality proof for ex.

For the sake of convenience, we write m+ i+ 1 = a.

6



20
21

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

The hypergeometric function 1F1

[
1

a+1
;x
]
satisfies the second-order ODE :

(δ(δ + a)− x(δ + 1))f(x) = 0.

By transformation:
f
′
+
a− x
x

f =
c1
x
.

Where c1 is a constant. We multiply the integration factor e−xxa on both sides of the
equation to get the equation:

(e−xxaf)
′
= c1x

a−1e−x

f = c1x
−aex

∫ x

0

ta−1e−tdt+ c2x
−aex

We will derive an explicit form of f = 1F1

[
1

a+1
;x
]
by taking the extreme x→ 0.

lim
x→0

1F1

[
1

a+ 1
;x

]
= 1

lim
x→0

c1x
−aex

∫ x

0

ta−1e−tdt = lim
x→0

xa−1

axa−1
= 1

This directly gives c1 = a . Hence, 1F1

[
1

a+1
;x
]

= ax−aex
∫ x
0
ta−1e−tdt. We rewrite the

equation with u = x
t
.

1F1

[
1

a+ 1
;x

]
= aex

∫ 1

0

ua−1e−uxdu = 1 + xex
∫ 1

0

uae−uxdu

R(x) =
xm+n

m!

∞∑
k=1

(−1)i
(
n

i

)
(xex

∫ 1

0

um+ie−uxdu) =
xm+n+1

m!
(

∫ 1

0

um(1− u)ne(1−u)xdu)

This result provides the [m,n] Padé approximation result to ex. By taking m = n, Siegel’s
result of [n, n] (orthogonal) Padé approximation to ex is fully recovered.

3.3 Irrationality measure of ex

We have the following integral representation forA(x) from the expansion formula above:

A(x) =
n∑
i=0

(−1)i
(
n
i

)Γ(m+ i+ 1)

m!
xn−i

=
xn−i

m!

n∑
i=0

(−1)i
(
n
i

) ∫ ∞
0

tm+ie−tdt

=
1

m!

∫ ∞
0

tm(x− t)ne−tdt

=
1

m!

∫ x

0

tm(x− t)ne−tdt+
1

m!

∫ ∞
x

tm(x− t)ne−tdt

7
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When n is large enough, we will always have∫ ∞
x

(t− x)n+me−tdt <

∫ ∞
x

tm(x− t)ne−tdt <
∫ ∞
x

tm+ne−tdt ∼ Γ(m+ n+ 1)

We take m = n, the growth rate of A(x) is given by (2n)!
n!

.

Now we estimate the remainder term:

R(x) =
x2n+1

n!
(

∫ 1

0

(u− u2)ne(1−u)xdu)

The factor e(1−u)x could be neglected as it gives a factor not related to n.
Using trigonometric substitution u = sin2s:∫ 1

0

(u− u2)ndu =

∫ π
2

0

(sin2 s cos2 s)n d sin s cos s

=
(2n)!!

(2n+ 1)!!22n

So R(x) ∼ x2n+1 · n!
(2n+1)!

. Hence, A(x)R(x) ∼ O(x
2n+1

2n+1
). When x = p

q
with p and q non-zero

integers, we need to multiply qn on both sides of A(x)ex − B(x) = R(x) and we still have
the following inequality for n large enough

(qnR(x)) <
1

(qnA(x))1−ε

with any ε > 0 fixed. This implies the irrationality measure of µ(ex) = 2. More generally,
the precise estimates above helped Davis to obtain the following.

Theorem 3.2 (Davis, [3]). For any ε > 0, there exists an infinite sequence of rational
numbers p

q
such that ∣∣∣∣e− p

q

∣∣∣∣ < (1

2
+ ε

)
ln ln q

q2 ln q

The constant 1
2
is not improvable.

4 Irrationality Property of CDF of Normal Distribution
In this section, we will prove the irrationality as well as find an upper bound for the irra-
tionality measure of the function

f(x) =
∞∑
k=0

xk

(2k + 1)k!
.

8
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It is related to CDF of normal distribution function Φ(x) via the following

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2dt =
1

2
+

x√
2π
f(−x

2

2
)

We will first construct an explicit form of Padé approximants to the function f(x), and then
estimate the growth rate of the remainder term to prove that it approaches 0 for infinite
number of approximants. Next, we will use a p-adic measure to prove the non-vanishing of
the remainder terms to complete the proof of irrationality.

4.1 Padé approximants and estimation of remainder terms

We will first briefly introduce similar work done by Maier.

Historically, in Maier’s original paper, he has provided the proof for irrationality of a similar
function ζ(q):

ζ(q) =
∞∑
k=0

qk

k!k

His construction of Padé approximants was complicated as it involves differential operators
of two variables. (See [4]) With lemma 3.1, however, we can directly construct an explicit
form of Padé approximants for this kind of functions.

The form of (partial) Padé approximation is given by:

A(x)f(x)−B(x) = R(x).

To eliminate the factor k! in the denominator of f(x), the factor (m+i)!
(i)!

in A(x) is needed
(similar to the previous section); to eliminate the factor (2k+ 1) in denominator of f(x), we
will put a

(
2m+2i+1

2m

)
in A(x), as it will produce factors (2i+ 2)(2i+ 3)...(2i+ 2m+ 1) in the

numerator, which will cancel the term 2(k − n + i) + 1 in the denominator of A(x)f(x) for
a range of k. An explicit form of A(x):

A(x) =
n∑
i=0

(−1)i
(
n

i

)
(m+ i)!(2m+ 2i+ 1)!

m!(2i+ 1)!(2m)!
xn−i

So that:

A(x)f(x) =
∞∑
k=0

Ekx
k =

∞∑
k=0

n∑
i=max(0,n−k+1)

(−1)n
(
n

i

)
1

m!(2m)!

(m+ i)!(2i+ 2)...(2i+ 2m+ 1)

(k − n+ i)!(2i+ 2k − 2n+ 1)
xk

When max(3m− 1, n+ 1) ≤ k ≤ m+ n, Ek = 0.

B(x) =

max(n−1,3m−1)∑
k=0

n∑
i=n−k

(−1)i
(
n

i

)(
m+ i

m

)(
2m+ 2i+ 1

2m

)
i!

(k − n+ i)!(2i+ 2k − 2n+ 1)
xk

9
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R(x) =
xm+n

m!

∞∑
k=0

n∑
i=0

(−1)i
(
n

i

)(
2m+ 2i+ 1

2m

)
(m+ i)!

(k +m+ i)!(2i+ 2k + 2m+ 1)
xk

When m,n→∞:

R(x) ∼ o(
1

(m!)(1−ε)
)→ 0.

However, this form of remainder terms does not inherently state its non-zero property (unlike
ex), as the factor (−1)i exists so that the sign for every term is not determined.

4.2 Non-vanishing of remainder terms

In this section, we will use a number theory measure to prove the non-vanishing of the
remainder terms, by showing that it is non-zero mod p, where p is a prime number.

This method was also originally from Maier’s paper (See [4]), who constructed an special
infinite series of m,n based on prime numbers, so that the approximant B(x) has a non-zero
value mod p while p|A(x). This will directly lead to the non-zero property of the remainder
term if we suppose f(x) is rational.

Suppose f(x) = v
u
(assume f(x) is rational, otherwise we have already arrived at the ir-

rationality result), where v, u = 1, 2, .... Let d = l.c.m[1, 3, ..., 2n− 1]. Notice that dB(x) is
an integer, as d will eliminate all terms (2i + 2k − 2n + 1) in the denominator, and dA(x)
is obviously an integer. We aim to prove that for fixed x, there are infinite sets of m,n that
p 6 |dB(x) while p|A(x). If so, for sufficiently large p:

dA(x)f(x)− dB(x) = dR(x)

udA(x)v − udB(x) = udR(x) 6≡ 0 mod p.

After trials and experiment, we have come up with an infinite sequence of m,n that satisfies
the above condition. Our motive is to let most of the terms in B(x) divisible by p, so that
we can easily prove the sum of few terms left is still not divisible by p.

m =
p− 3

2

n =
3p+ 1

2

For the sake of convenience, we denote

d

(
n

i

)(
m+ i

m

)(
2m+ 2i+ 1

2m

)
i!

(k − n+ i)!(2i+ 2k − 2n+ 1)
xk

as B(i,k)(x).

p 6 |dB(x)

10
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When
m =

p− 3

2
, n =

3p+ 1

2
.

Proof. We will analyse the value of B(i,k)(x) based on values of i. Firstly, notice the bound
for i, k: i ≤ n, k ≤ n− 1, 2(k− n+ i) + 1 ≤ 2n− 1 = 3p. We consider the following different
conditions:

1. When p 6 |2i+ 2k − 2n+ 1: Since p|d, we have

p| d

(2(k − n+ i) + 1
;

So
p|B(i,k)(x).

2. When p|2i+ 2k − 2n+ 1: Notice that vp(d) = 1, so

p 6 | d

2(k − n+ i) + 1

We consider the following subcases,

(a) When 2(k − n+ i) + 1 = p:

i. When i ≥ p, Since k − n+ i = 2p−1
2

, obviously, we have

p| i!

(k − n+ i)!
;

and
p|B(i,k)(x).

ii. When p+1
2

+ 1 ≤ i < p, we have(
n

i

)
=

p+ p+1
2

i!(p+ p+1
2
− i)!

,

As p+ p+1
2
− i < p, vp(i!(p+ p+1

2
− i)!) = 0; vp(p+ p+1

2
) = 1, so

p|
(
n

i

)
.

iii. When i = p+1
2
, k = 3p−1

2
, we have

B(k,i)(x) =
d

p
(−1)

p+1
2

(3p+1
2
p+1
2

)(
p− 1
p+1
2

)(
2p− 1

p− 3

)
p+ 1

2
x

3p−1
2 .

11
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(b) When 2(k − n+ i) + 1 = 3p, we have

i = n =
3p+ 1

2
; k = n− 1 =

3p− 1

2
,

B(k,i)(x) = (−1)
3p+1

2
d

3p

(
2p− 1
3p+1
2

)(
4p− 1

p− 3

)
3p+ 1

2
x

3p−1
2 .

Upon addition:

B(x) ≡ d

p

p+ 1

2
x

3p−1
2 (

1

3

(
2p− 1
3p+1
2

)(
4p− 1

p− 3

)
−
(3p+1

2
p+1
2

)(
p− 1
p+1
2

)(
2p− 1

p− 3

)
) mod p

B(x) 6≡ 0⇐⇒ 1

3

(
2p− 1
3p+1
2

)(
4p− 1

p− 3

)
−
(3p+1

2
p+1
2

)(
p− 1
p+1
2

)(
2p− 1

p− 3

)
6≡ 0

⇐⇒
(3p+1

2
)!(p− 1)!(2p− 1)!

(p+1
2

)!2p!(p−3
2

)!(p− 3)!(p+ 2)!
− 1

3

(2p− 1)!(4p− 1)!

(3p+1
2

)!(p−3
2

)!(p− 3)!(3p+ 2)!

=
1

(p−3
2

)!(p− 3)!
(
(3p+1

2
)!(p− 1)!(2p− 1)!

(p+1
2

)!2p!(p+ 2)!
− 1

3

(2p− 1)!(4p− 1)!

(3p+1
2

)!(3p+ 2)!
)

=
1

(p−3
2

)!(p− 3)!
(

1

2(p+1
2

)!
− 1

6(p+1
2

)!
) 6≡ 0 mod p.

4.3 Irrationality measure of CDF

Lemma 4.1 (Upper bound of irrationality measure). Suppose for two infinite sequences of
positive integers, [An], [Bn] and a positive, explicit real number t, the following inequality
relationship

|Anx−Bn| ≤
C

Atn

Where C is a constant independent of n, holds for all n > 0. Then x is irrational; its
irrationality measure has an upper bound of 1 + 1

t
.

This folklore lemma has appeared in people’s work frequently. However, we cannot specify
the earlier version of this lemma or its inventor.

In this section, we will use this lemma to find an upper bound for the irrationality measure
of CDF.

|A(m,n)(x)f(x)−B(m,n)(x)| = |R(m,n)(x)| ∼ o(
1

(m!)1−ε
);

12
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A(m,n)(x) =
n∑
i=0

(−1)i
(
n

i

)(
2m+ 2i+ 1

2m

)
(m+ i)!

m!
xn−i,

i ≤ n;

|A(m,n)(x)| <
n∑
i=0

(
n

i

)(
m+ i

m

)(
2m+ 2i+ 1

2m

)
n!xn−i.

When n→∞,
|A(m,n)(x)| < (n!)1−ε.

n =
3p+ 1

2
,m =

p− 3

2
, n = 3m+ 5.

1

|A(m,n)(x)|
> (

1

(3m)!
)1+ε.

Hence,

|R(m,n)(x)| < C

|A(m,n)(x)|
1
3
(1−ε)

t =
1

3
.

The results of this section directly leads to the upper bound of the irrationality measure of
CDF of normal distribution.

Theorem 4.2 (irrationality of CDF of normal distribution). For the cumulative distribution
function of normal distribution,

f(x) =
∞∑
k=0

xk

(2k + 1)k!
,

For every rational x 6= 0, the value of f(x) is irrational; its irrationality measure has an
upper bound 4.

5 Irrationality of a Special Form of Confluent Hyperge-
ometric Function

In this section, we will study a special formal power series:

f(x) =
∞∑
k=0

xk

k!(bk + s)(bk + s+ 1)...(bk + t)

Where b, s, t are positive integers, g.c.d(b, t) = 1. We will use a similar method of ex-
plicitly constructing the Padé approximants, and we will generalise the "mod-p" proof for

13
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non-vanishing of remainder terms, to complete the proof of irrationality to this type of
function.

Notice that when b = 1,

f(x) =
1

s(s+ 1)...t
1F1

[
s

t+ 1
;x

]
;

When t = s,

f(x) =
1

b
1F1

[ t
b

t
b

+ 1
;x

]
.

(notice that in this case, the limiting condition g.c.d(b, t) = 1 is not necessary as the single
term (bk + t) in the denominator can be reduced.)

5.1 Padé approximants

We will first construct a general form of Padé approximants to f(x):

A(x)f(x)−B(x) = R(x)

Similar to the previous sections, to eliminate the k! in the denominator of f(x), we will still
take the term (m+i)!

m!
in the numerator of A(x); to eliminate the terms (bk + s)(bk + s +

1)...(bk + t), we will take
(
b(m+i)+t
bi+s

)
.

A(x) = d
n∑
i=0

(−1)i
(
n

i

)
(m+ i)!

m!

(
b(m+ i) + t

bi+ s

)
xn−i;

B(x) =
n−1∑
k=0

n∑
i=n−k

(−1)i
(
n

i

)(
m+ i

i

)(
b(m+ i) + t

bm

)
i!

(k − n+ i)!

d

(b(k − n+ i) + s)...(b(k − n+ i) + t)
xk

R(x) =
xm+n

m!

∞∑
k=0

n∑
i=0

(−1)i
(
n

i

)(
b(m+ i) + t

bm

)
(m+ i)!

(k +m+ i)!

d

(b(k +m+ i) + s)...(b(k +m+ i) + t)
xk

Where d = l.c.m[s, s+ 1, s+ 2, ..., b(n− 1) + t]. Following the same argument, our aim is to
prove B(x) 6≡ 0( mod p) for specific p. Let

m =
⌊p
b

⌋
, n = p+

p− t
b

+ 1,

14
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Notice that g.c.d(b, t) = 1, so that there are infinite number of prime number p satisfy the
condition p−t

b
is an integer, by Dirichlet prime number theorem.

We have the following mod p lemma for B(x) when p is chosen as above.

Lemma 5.1. B(x) 6≡ 0 mod p.

Proof. We consider the following subcases,

1. When p 6 |b(k − n+ i) + t:

p| d

b(k − n+ i) + t
.

2. When p|b(k − n+ i) + t:

(a) If b(k − n+ i) + t = p:

k − n+ i < p; i ≥ p− t
b

+ (n− k) ≥ p− t
b

+ 1.

If i ≥ p:

p| i!

(k − n+ i)!
.

If p−t
b

+ 2 ≤ i < p:

p|
(
p+ p−t

b
+ 1

i

)
.

The only term left not divisible by p is i = p−t
b

+ 1, k = n− 1:

p 6 |(−1)
p−t
b

+1

(
p+ p−t

b
+ 1

p

)(⌊p
b

⌋
+ p−t

b
+ 1

p−t
b

+ 1

)(
p+ b

⌊
p
b

⌋
p

)
(
p− t
b

+ 1)
d

p
x
p−t
b

+1.

(b) When b(k − n+ i) + t = lp, 1 < l < b:

k − n+ i =
lp− t
b

< p.

If p−t
b

+ 2 ≤ i < p:

p|
(
p+ p−t

b
+ 1

i

)
.

If i ≥ p:

p| i!

(k − n+ i)!
.

15
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(c) When b(k − n+ i) + t = (b+ 1)p:

i = n = p+
p− t
b

+ 1; k = n− 1 = i− 1.

Where i, k are both maximised.

p 6 |(−1)p+
p−t
b

+1

(
p+

⌊
p
b

⌋
+ p−t

b
+ 1

p+
⌊
p
b

⌋ )(
(b+ 1)p+ b

⌊
p
b

⌋
(b+ 1)p

)
(p+

p− t
b

+1)
d

(b+ 1)p
xp+

p−t
b

+1.

3. When p|(b(k − n + i) + s)...(b(k − n + i) + t − 1): Notice that b(k − n + i) + s <
b(k − n+ i) + s+ 1 < ... < b(k − n+ i) + t− 1 < (b+ 1)p. If p− 1 ≥ i ≥ p−t

b
+ 2:

p|
(
p+ p−t

b
+ 1

i

)
.

If p ≤ i:
k − n+ i ≤ p+ 1− s,

p| i!

(k − n+ i)!
.

We have shown that only two terms in B(x) has a non-zero remainder mod-p. To show that
upon addition, the two terms still produce a non-zero remainder, we will use the following
lemma:

Lemma 5.2. If a ≥ b, c ≥ d, a ≡ b, c ≡ d mod p, p is a prime number;(
a

b

)
≡
(
c

d

)
mod p.

Proof. It is straight-forward that

(n+ p)!

(m+ p)!
≡ n!

m!
mod p.

Hence,
(n+ p)!

m!(n−m+ p)!
≡ n!

m!(n−m)!
mod p(

n+ p

m

)
≡
(
n

m

)
mod p.

Similarly, (
n

m+ p

)
≡
(
n

m

)
mod p.

Now we can complete the proof by induction.

16
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Notice that in (2.3) i, k mod p is taken the same value as (2.1). Using lemma 5.2, this will
directly leads to: (

p+ p−t
b

+ 1

p

)(⌊p
b

⌋
+ p−t

b
+ 1

p−t
b

+ 1

)(
p+ b

⌊
p
b

⌋
p

)
(
p− t
b

+ 1)

≡
(
p+

⌊
p
b

⌋
+ p−t

b
+ 1

p+
⌊
p
b

⌋ )(
(b+ 1)p+ b

⌊
p
b

⌋
(b+ 1)p

)
(p+

p− t
b

+ 1)

≡ W 6≡ 0 mod p.

B(x) ≡ (−1)
p−t
b

+1d

p
+ (−1)p+

p−t
b

+1 d

(b+ 1)p
)xp+

p−t
b

+1W ≡ |d
p
− d

(b+ 1)p
|Wxp+

p−t
b

+1 mod p

p 6 |B(x).

5.2 Estimation of irrationality measure

R(x) =
xm+n

m!

∞∑
k=0

n∑
i=0

(−1)i
(
n

i

)(
b(m+ i) + t

bm

)
(m+ i)!

(k +m+ i)!

d

(b(k +m+ i) + s)...(b(k +m+ i) + t)
xk;

A(x) = d
n∑
i=0

(−1)i
(
n

i

)
(m+ i)!

m!

(
b(m+ i) + t

bi+ s

)
xn−i.

When n,m→∞:

|R(x)| < (
1

m!
)(1−ε);

|A(x)| < (n!)(1+ε).

Where
m =

⌊p
b

⌋
, n = p+

p− t
b

.

For sufficiently large p, bm < n < (b+ 2)m.

|R(m,n)(x)| < C

|A(m,n)(x)|
1−ε
b+1

,

t =
1

b+ 1
;

Hence the upper bound of the irrationality of f(x) is b+ 2.
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Theorem 5.3 (Irrationality of a generalised form of confluent hypergeometric function).
For function defined as

f(x) =
∞∑
k=0

xk

k!(bk + s)(bk + s+ 1)...(bk + t)
,

where b, t, s are positive integers and g.c.d(b, t) = 1: when x 6= 0 is rational, the value of
f(x) is irrational, and its irrationality measure has an upper bound of b+ 2.

From this result, we can obtain the proof of irrationality and an upper bound of irrationality
measures to some confluent hypergeometric functions. By shifting the value chosen for m,n
to m = p−1, n = 2p−1, we can also apply this theorem a form of Ein (exponential integral)
function, which can be written as

f(x) =
∞∑
k=1

xk

k!k
.

Which has an upper bound of irrationality measure of 3 (b = 1, t = s = 0).

6 Conclusion
In this paper, we have mainly used Padé approximation to study the irrationality of special
function values.

Focusing on functions in a similar form of confluent hypergeometric functions, we have con-
structed the Padé-type approximants explicitly and derived an estimation to the growth rate
of the remainder terms. We have generalised the proof of Maier to use a mod p approach to
show that the remainder term is non-vanishing, which completed our proof for the irrational-
ity of a generalised form of confluent hypergeometric function. Our explicit representation
of approximants also provides a direct implication to the upper bound for the irrationality
of the values of these functions at rational points. This result can be used to show the
irrationality property of exponential function, exponential integral function, CDF of normal
distribution, etc.

It is worth notice that our bound of irrationality measure considerably wide and has place for
improvement, since our estimates to the growth rates of the denominators and remainders are
not the most accurate. Although Euler’s hypergeometric transformation can provide a good
integration representations to the remainder terms, it is still difficult to estimate its growth
rate due to the alternative signs of each terms produced by the factor (−1)i. Meanwhile,
our research result is limited to the confluent-type hypergeometric functions with specific
parameters, which indicates possible direction of future study including improvement on
upper bound of irrationality measures, as well as studying on more generalised forms of
functions.
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Another important ingredient used in our proof is the mod-pmethod to achieve non-vanishing
of remainder terms. This involves special choices of degrees of polynomials related to prime
numbers p and detailed study of mod-p results of some products of binomial coefficients. We
hope to carry out this to p-adic results of these Padé type approximations.
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